RESUMO
BACKGROUND AND AIMS: Autologous keratinocyte sheets constitute an important component of the burn wound treatment toolbox available to a surgeon and can be considered a life-saving procedure for patients with severe burns over 50% of their total body surface area. Large-scale keratinocyte sheet cultivation still fundamentally relies on the use of animal components such as inactivated murine 3T3 fibroblasts as feeders, animal-derived enzymes such as trypsin, as well as media components such as fetal bovine serum (FBS). This study was therefore aimed to optimize autologous keratinocyte sheets by comparing various alternatives to critical components in their production. METHODS: Human skin samples were retrieved from remnant operative tissues. Cell isolation efficiency and viability were investigated by comparing the efficacy of porcine-derived trypsin and animal-free enzymes (Accutase and TrypLESelect). The subsequent expansion of the cells and the keratinocyte sheet formation was analyzed, comparing various cell culture substrates (inactivated murine 3T3 fibroblasts, inactivated human fibroblasts, Collagen I or plain tissue culture plastic), as well as media containing serum or chemically defined animal-free media. RESULTS: The cell isolation step showed clear cell yield advantages when using porcine-derived trypsin, compared to animal-free alternatives. The keratinocyte sheets produced using animal-free serum were similar to those produced using 3T3 feeder layer and FBS-containing medium, particularly in mechanical integrity as all grafts were liftable. In addition, sheets grown on collagen in an animal-free medium showed indications of advantages in homogeneity, speed, reduced variability, and differentiation status compared to the other growth conditions investigated. Most importantly, the procedure was compatible with the up-scaling requirements of major burn wound treatments. CONCLUSION: This study demonstrated that animal-free components could be used successfully to reduce the risk profile of large-scale autologous keratinocyte sheet production, and thereby increase clinical accessibility.
RESUMO
Autologous cell-based therapies got a step closer to reality with the introduction of induced pluripotent stem cells. Fetal stem cells, such as amniotic fluid and membrane mesenchymal stem cells, represent a unique type of undifferentiated cells with promise in tissue engineering and for reprogramming into iPSC for future pediatric interventions and stem cell banking. The protocol presented here describes an optimized procedure for extracting and culturing primary amniotic fluid and membrane mesenchymal stem cells and generating episomal induced pluripotent stem cells from these cells in fully chemically defined culture conditions utilizing human recombinant vitronectin and the E8 medium. Characterization of the new lines by applying stringent methods - flow cytometry, confocal imaging, teratoma formation and transcriptional profiling - is also described. The newly generated lines express markers of embryonic stem cells - Oct3/4A, Nanog, Sox2, TRA-1-60, TRA-1-81, SSEA-4 - while being negative for the SSEA-1 marker. The stem cell lines form teratomas in scid-beige mice in 6-8 weeks and the teratomas contain tissues representative of all three germ layers. Transcriptional profiling of the lines by submitting global expression microarray data to a bioinformatic pluripotency assessment algorithm deemed all lines pluripotent and therefore, this approach is an attractive alternative to animal testing. The new iPSC lines can readily be used in downstream experiments involving the optimization of differentiation and tissue engineering.
Assuntos
Líquido Amniótico/citologia , Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Camundongos SCIDRESUMO
Valvular heart disease remains to be a major cause of death worldwide with increasing prevalence, mortality, and morbidity. Current heart valve replacements are associated with several limitations due to their nonviable nature. In this regard, heart valve tissue engineering has shown to represent a promising concept in order to overcome these limitations and replace diseased cardiac valves with living, autologous constructs. These bioengineered valves hold potential for in situ remodeling, growth, and repair throughout the patient's lifetime without the risk of thromboembolic complications and adverse immune responses. For the fabrication of tissue-engineered heart valves, several concepts have been established, the "classical" in vitro tissue engineering approach, the in situ tissue engineering approach, and alternative approaches including three-dimensional printing and electrospinning. Besides first attempts have been conducted in order to produce a tissue-engineered venous valve for the treatment of deep venous valve insufficiency. Here we review basic principals and current scientific status of valvular tissue engineering, including a critical discussion and outlook for the future.
Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências , Válvulas Venosas , Animais , HumanosRESUMO
To overcome current limitations of valve substitutes and tissue substitutes the technology of tissue engineering (TE) continues to offer new perspectives in congenital cardiac surgery. We report our experiences and results implanting a decellularized TE patch in nine sheep in orthotropic position as aortic valve leaflet substitute. Establishing the animal model, feasibility, cardiopulmonary bypass issues and operative technique are highlighted.