Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(1): 394-408, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28085833

RESUMO

Dielectric loaded surface plasmon waveguides (DLSPPWs) comprised of polymer ridges deposited on top of CMOS compatible metal thin films are investigated at telecom wavelengths. We perform a direct comparison of the properties of copper (Cu), aluminum (Al), titanium nitride (TiN) and gold (Au) based waveguides by implementing the same plasmonic waveguiding configuration for each metal. The DLSPPWs are characterized by leakage radiation microscopy and a fiber-to-fiber configuration mimicking the cut-back method. We introduce the ohmic loss rate (OLR) to analyze quantitatively the properties of the CMOS metal based DLSPPWs relative to the corresponding Au based waveguides. We show that the Cu, Al and TiN based waveguides feature extra ohmic loss compared to Au of 0.027 dB/µm, 0.18 dB/µm and 0.52 dB/µm at 1550nm respectively. The dielectric function of each metal extracted from ellipsometric spectroscopic measurements is used to model the properties of the DLSP-PWs. We find a fairly good agreement between experimental and modeled DLSPPWs properties except for Al featuring a large surface roughness. Finally, we conclude that TiN based waveguides sustaining intermediate effective index (in the range 1.05-1.25) plasmon modes propagate over very short distances restricting the the use of those modes in practical situations.

2.
Opt Express ; 25(3): 1762-1768, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519029

RESUMO

We demonstrate a plasmonic Mach-Zehnder (MZ) modulator with a flat frequency response exceeding 170 GHz. The modulator comprises two phase modulators exploiting the Pockels effect of an organic electro-optic material in plasmonic slot waveguides. We further show modulation at 100 GBd NRZ and 60 GBd PAM-4. The electrical drive signals were generated using a 100 GSa/s digital to analog converter (DAC). The high-speed and small-scale devices are relevant for next-generation optical interconnects.

3.
Opt Express ; 24(22): 25608-25618, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828496

RESUMO

In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.

4.
Opt Express ; 23(23): 29746-57, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698457

RESUMO

Plasmonic modulators might pave the way for a new generation of compact low-power high-speed optoelectronic devices. We introduce an extremely compact transmitter based on plasmonic Mach-Zehnder modulators offering a capacity of 4 × 36 Gbit/s on a footprint that is only limited by the size of the high-speed contact pads. The transmitter array is contacted through a multicore fiber with a channel spacing of 50 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA