Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cheminform ; 16(1): 49, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693555

RESUMO

Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge. SCIENTIFIC CONTRIBUTION: This study introduces a new database linking nanomaterial stressors to the first known MIE or KE. Second, it presents a reproducible workflow to analyze and summarize this knowledge. Third, this work extends the use of semantic web technologies to the field of nanoinformatics and nanosafety.

2.
Part Fibre Toxicol ; 21(1): 8, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409078

RESUMO

BACKGROUND: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS: The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.


Assuntos
Asma , Lesão Pulmonar , Camundongos , Animais , Emissões de Veículos/toxicidade , Lesão Pulmonar/patologia , Dióxido de Silício/toxicidade , Autoanticorpos/farmacologia , Anticorpos Antinucleares/farmacologia , Microtomografia por Raio-X , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Pulmão , Citocinas/genética , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Material Particulado/toxicidade
3.
Environ Res ; 250: 118493, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38378125

RESUMO

In low-income countries, a widespread but poorly studied type of cottage industry consists of melting scrap metal for making cookware. We assessed the exposure to lead (Pb) among artisanal workers, and their families, involved in manufacturing cookware from scrap metal. In a cross-sectional survey, we compared artisanal cookware manufacturing foundries with carpentry workshops (negative controls) and car battery repair workshops (positive controls), all located in residential areas, in Lubumbashi (DR Congo). We collected surface dust in the workspaces, and blood and urine samples among workers, as well as residents living in the cookware workshops. Trace elements were quantified in the samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In surface dust, median Pb concentrations were higher in cookware foundries (347 mg/kg) than in carpentries (234 mg/kg) but lower than in battery repair workshops (22,000 mg/kg). In workers making the cookware (n = 24), geometric mean (GM) Pb blood cencentration was 118 µg/L [interquartile range (IQR) 78.4-204], i.e. nearly twice as high as among carpenters [60.2 µg/L (44.4-84.7), n = 33], and half the concentration of battery repair workers [255 µg/L (197-362), n = 23]. Resident children from the cookware foundries, had higher urinary Pb [6.2 µg/g creatinine (2.3-19.3), n = 6] than adults [2.3 (2.2-2.5), n = 3]. Our investigation confirms the high Pb hazard linked to car battery repair and reveals a high exposure to Pb among artisanal cookware manufacturers and their families, especially children, in residential areas of a city in a low-income country.


Assuntos
Monitoramento Biológico , Chumbo , Exposição Ocupacional , Humanos , Chumbo/sangue , Chumbo/urina , Chumbo/análise , Adulto , Estudos Transversais , Masculino , Exposição Ocupacional/análise , Feminino , Pessoa de Meia-Idade , Utensílios de Alimentação e Culinária , Adulto Jovem , Criança , Exposição Ambiental/análise , Adolescente , Poeira/análise , Pré-Escolar
4.
Arch Toxicol ; 98(2): 493-505, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148415

RESUMO

The use of laboratory animals in research has been extensively criticized. While most of the critique has been centered around the ethical aspect, also the economic and scientific aspects have been frequently mentioned as points of concern. As a result, the use of alternative methods has gradually become more enticing. The most used alternatives to laboratory animals are the 2D monolayer cell cultures. However, the limited translatability of these monolayer cell cultures to in vivo has led to the development of 3D cell cultures that are believed to better capture the in vivo physiology and pathology. Here we report on the development of a physiologically more relevant 3D cell model (spheroids) comprised of human bronchial epithelial (16HBE14o-) cells, for use in respiratory toxicity research. Culturing 16HBE14o-cells as hanging-drops led to the formation of stable spheroids which showed an increased expression of CLDN1 when compared to 2D monolayer cultured cells. In addition, cell-cycle analysis revealed an increased sub-G0 population and signs of G0/G1 arrest in spheroids. Afterwards, standard operating procedures (SOPs) were established, and existing protocols optimized, for compatibility with spheroids. Spheroids were successfully used to assess cytotoxicity, genotoxicity, apoptosis/necrosis, and oxidative stress after exposure to known cytotoxic or genotoxic compounds. The development of the bronchial epithelial spheroids and the establishment of SOPs can contribute to a more reliable toxicity assessment of chemicals and may aid in bridging the gap between in vivo and in vitro experiments.


Assuntos
Antineoplásicos , Esferoides Celulares , Animais , Humanos , Células Cultivadas , Técnicas de Cultura de Células/métodos
5.
Toxics ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38133375

RESUMO

The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a lysine poly-hydroxyethyl methacrylate nanoparticle (NP) [Lys-p(HEMA)], loaded with formoterol, both in vitro and in vivo in an ovalbumin (OVA) asthma model. The successfully synthesized nanodrug formulation showed an expectedly steady in vitro release profile. There was no sign of in vitro toxicity, and the 16HBE and THP-1 cell lines remained vital after exposure to the nanocarrier, both loaded and unloaded. In an experimental asthma model (Balb/c mice) of ovalbumin sensitization and challenge, the nanocarrier loaded and unloaded with formoterol was tested in a preventive strategy and compared to treatment with the drug in a normal formulation. The airway hyperresponsiveness (AHR) and pulmonary inflammation in the bronchoalveolar lavage (BAL), both cellular and biochemical, were assessed. The application of formoterol as a regular drug and the unloaded and formoterol-loaded NP in OVA-sensitized mice followed by a saline challenge was not different from the control group. Yet, both the NP formulation and the normal drug application led to a more deteriorated lung function and increased lung inflammation in the OVA-sensitized and -challenged mice, showing that the use of the p(HEMA) nanocarrier loaded with formoterol needs more extensive testing before it can be applied in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA