Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-37951382

RESUMO

Patatin-like phospholipase domain containing proteins (PNPLAs) play diverse roles in lipid metabolism. In this review, we focus on the enzymatic properties and predicted 3D structures of PNPLA1-5. PNPLA2-4 exert both catabolic and anabolic functions. Whereas PNPLA1 is predominantly expressed in the epidermis and involved in sphingolipid biosynthesis, PNPLA2 and 4 are ubiquitously expressed and exhibit several enzymatic activities, including hydrolysis and transacylation of various (glycero-)lipid species. This review summarizes known biological roles for PNPLA-mediated hydrolysis and transacylation reactions and highlights open questions concerning their physiological function.


Assuntos
Lipase , Metabolismo dos Lipídeos , Hidrólise , Lipase/metabolismo , Epiderme/metabolismo , Lipídeos
3.
J Lipid Res ; 65(1): 100491, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135254

RESUMO

Lipolysis is an essential metabolic process that releases unesterified fatty acids from neutral lipid stores to maintain energy homeostasis in living organisms. Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis and can be coactivated upon interaction with the protein comparative gene identification-58 (CGI-58). The underlying molecular mechanism of ATGL stimulation by CGI-58 is incompletely understood. Based on analysis of evolutionary conservation, we used site directed mutagenesis to study a C-terminally truncated variant and full-length mouse ATGL providing insights in the protein coactivation on a per-residue level. We identified the region from residues N209-N215 in ATGL as essential for coactivation by CGI-58. ATGL variants with amino acids exchanges in this region were still able to hydrolyze triacylglycerol at the basal level and to interact with CGI-58, yet could not be activated by CGI-58. Our studies also demonstrate that full-length mouse ATGL showed higher tolerance to specific single amino acid exchanges in the N209-N215 region upon CGI-58 coactivation compared to C-terminally truncated ATGL variants. The region is either directly involved in protein-protein interaction or essential for conformational changes required in the coactivation process. Three-dimensional models of the ATGL/CGI-58 complex with the artificial intelligence software AlphaFold demonstrated that a large surface area is involved in the protein-protein interaction. Mapping important amino acids for coactivation of both proteins, ATGL and CGI-58, onto the 3D model of the complex locates these essential amino acids at the predicted ATGL/CGI-58 interface thus strongly corroborating the significance of these residues in CGI-58-mediated coactivation of ATGL.


Assuntos
Inteligência Artificial , Lipase , Animais , Camundongos , Lipase/metabolismo , Lipólise/fisiologia , Triglicerídeos/metabolismo , Aminoácidos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo
4.
Nat Microbiol ; 8(11): 2020-2032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828246

RESUMO

Trypanosoma brucei causes African trypanosomiasis, colonizing adipose tissue and inducing weight loss. Here we investigated the molecular mechanisms responsible for adipose mass loss and its impact on disease pathology. We found that lipolysis is activated early in infection. Mice lacking B and T lymphocytes fail to upregulate adipocyte lipolysis, resulting in higher fat mass retention. Genetic ablation of the rate-limiting adipose triglyceride lipase specifically from adipocytes (AdipoqCre/+-Atglfl/fl) prevented the stimulation of adipocyte lipolysis during infection, reducing fat mass loss. Surprisingly, these mice succumbed earlier and presented a higher parasite burden in the gonadal adipose tissue, indicating that host lipolysis limits parasite growth. Consistently, free fatty acids comparable with those of adipose interstitial fluid induced loss of parasite viability. Adipocyte lipolysis emerges as a mechanism controlling local parasite burden and affecting the loss of fat mass in African trypanosomiasis.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Camundongos , Lipólise/genética , Trypanosoma brucei brucei/metabolismo , Lipase/genética , Adipócitos/metabolismo , Adipócitos/patologia , Obesidade
5.
J Lipid Res ; 64(11): 100457, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832604

RESUMO

Intracellular lipolysis-the enzymatic breakdown of lipid droplet-associated triacylglycerol (TAG)-depends on the cooperative action of several hydrolytic enzymes and regulatory proteins, together designated as lipolysome. Adipose triglyceride lipase (ATGL) acts as a major cellular TAG hydrolase and core effector of the lipolysome in many peripheral tissues. Neurons initiate lipolysis independently of ATGL via DDHD domain-containing 2 (DDHD2), a multifunctional lipid hydrolase whose dysfunction causes neuronal TAG deposition and hereditary spastic paraplegia. Whether and how DDHD2 cooperates with other lipolytic enzymes is currently unknown. In this study, we further investigated the enzymatic properties and functions of DDHD2 in neuroblastoma cells and primary neurons. We found that DDHD2 hydrolyzes multiple acylglycerols in vitro and substantially contributes to neutral lipid hydrolase activities of neuroblastoma cells and brain tissue. Substrate promiscuity of DDHD2 allowed its engagement at different steps of the lipolytic cascade: In neuroblastoma cells, DDHD2 functioned exclusively downstream of ATGL in the hydrolysis of sn-1,3-diacylglycerol (DAG) isomers but was dispensable for TAG hydrolysis and lipid droplet homeostasis. In primary cortical neurons, DDHD2 exhibited lipolytic control over both, DAG and TAG, and complemented ATGL-dependent TAG hydrolysis. We conclude that neuronal cells use noncanonical configurations of the lipolysome and engage DDHD2 as dual TAG/DAG hydrolase in cooperation with ATGL.


Assuntos
Lipólise , Humanos , Lipase/genética , Lipase/metabolismo , Neurônios/metabolismo , Paraplegia , Fosfolipases/metabolismo , Triglicerídeos/metabolismo
6.
Bull Math Biol ; 85(9): 82, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37544001

RESUMO

Fatty acids (FAs) are crucial energy metabolites, signalling molecules, and membrane building blocks for a wide range of organisms. Adipose triglyceride lipase (ATGL) is the first and presumingly most crucial regulator of FA release from triacylglycerols (TGs) stored within cytosolic lipid droplets. However, besides the function of releasing FAs by hydrolysing TGs into diacylglycerols (DGs), ATGL also promotes the transacylation reaction of two DG molecules into one TG and one monoacylglycerol molecule. To date, it is unknown whether DG transacylation is a coincidental byproduct of ATGL-mediated lipolysis or whether it is physiologically relevant. Experimental evidence is scarce since both, hydrolysis and transacylation, rely on the same active site of ATGL and always occur in parallel in an ensemble of molecules. This paper illustrates the potential roles of transacylation. It shows that, depending on the kinetic parameters but also on the state of the hydrolytic machinery, transacylation can increase or decrease downstream products up to 80% respectively 30%. We provide an extensive asymptotic analysis including quasi-steady-state approximations (QSSA) with higher order correction terms and provide numerical simulation. We also argue that when assessing the validity of QSSAs one should include parameter sensitivity derivatives. Our results suggest that the transacylation function of ATGL is of biological relevance by providing feedback options and altogether stability to the lipolytic machinery in adipocytes.


Assuntos
Lipase , Lipólise , Lipólise/fisiologia , Lipase/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Adipócitos , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo
7.
J Cachexia Sarcopenia Muscle ; 14(1): 93-107, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36351437

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease-specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic- and non-cachexigenic tumours. METHODS: MCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10-11-week-old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical-, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and -composition, food- and water intake, locomotor activity, O2 consumption, CO2 production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high-resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose- and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin-6 (Il-6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing. RESULTS: CHX207, but not MCA207-tumour-bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL-6 concentrations (190 pg/mL, P ≤ 0.0001), increased energy expenditure (+28%, P ≤ 0.01), adipose tissue loss (-47%, P ≤ 0.0001), skeletal muscle wasting (-18%, P ≤ 0.001), and body weight reduction (-13%, P ≤ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and -synthesis combined with increased lipolysis but was not associated with elevated beta-adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (-21.8%, P ≤ 0.001), increased catabolic- and reduced anabolic signalling. Deletion of IL-6 from CHX207 cancer cells completely protected CHX207IL6KO -tumour-bearing mice from CAC. CONCLUSIONS: In this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non-cachectic MCA207-tumour-bearing mice. IL-6 represents an essential trigger for CAC development in CHX207-tumour-bearing mice.


Assuntos
Caquexia , Interleucina-6 , Neoplasias , Animais , Feminino , Masculino , Camundongos , Tecido Adiposo/patologia , Caquexia/patologia , Fibrossarcoma/complicações , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/patologia , Neoplasias/complicações
8.
Metabolism ; 137: 155331, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228741

RESUMO

BACKGROUND: The triglyceride (TG) transfer activity of microsomal triglyceride transfer protein (MTP) is essential for lipoprotein assembly in the liver and intestine; however, its function in adipose tissue, which does not assemble lipoproteins, is unknown. Here we have elucidated the function of MTP in adipocytes. APPROACH AND RESULTS: We demonstrated that MTP is present on lipid droplets in human adipocytes. Adipose-specific MTP deficient (A-Mttp-/-) male and female mice fed an obesogenic diet gained less weight than Mttpf/f mice, had less fat mass, smaller adipocytes and were insulin sensitive. A-Mttp-/- mice showed higher energy expenditure than Mttpf/f mice. During a cold challenge, A-Mttp-/- mice maintained higher body temperature by mobilizing more fatty acids. Biochemical studies indicated that MTP deficiency de-repressed adipose triglyceride lipase (ATGL) activity and increased TG lipolysis. Both wild type MTP and mutant MTP deficient in TG transfer activity interacted with and inhibited ATGL activity. Thus, the TG transfer activity of MTP is not required for ATGL inhibition. C-terminally truncated ATGL that retains its lipase activity interacted less efficiently than full-length ATGL. CONCLUSION: Our findings demonstrate that adipose-specific MTP deficiency increases ATGL-mediated TG lipolysis and enhances energy expenditure, thereby resisting diet-induced obesity. We speculate that the regulatory function of MTP involving protein-protein interactions might have evolved before the acquisition of TG transfer activity in vertebrates. Adipose-specific inhibition of MTP-ATGL interactions may ameliorate obesity while avoiding the adverse effects associated with inhibition of the lipid transfer activity of MTP.


Assuntos
Lipase , Lipólise , Animais , Feminino , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Lipase/metabolismo , Lipídeos/farmacologia , Obesidade/metabolismo
9.
Nature ; 606(7916): 968-975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676490

RESUMO

Branched fatty acid (FA) esters of hydroxy FAs (HFAs; FAHFAs) are recently discovered lipids that are conserved from yeast to mammals1,2. A subfamily, palmitic acid esters of hydroxy stearic acids (PAHSAs), are anti-inflammatory and anti-diabetic1,3. Humans and mice with insulin resistance have lower PAHSA levels in subcutaneous adipose tissue and serum1. PAHSA administration improves glucose tolerance and insulin sensitivity and reduces inflammation in obesity, diabetes and immune-mediated diseases1,4-7. The enzyme(s) responsible for FAHFA biosynthesis in vivo remains unknown. Here we identified adipose triglyceride lipase (ATGL, also known as patatin-like phospholipase domain containing 2 (PNPLA2)) as a candidate biosynthetic enzyme for FAHFAs using chemical biology and proteomics. We discovered that recombinant ATGL uses a transacylation reaction that esterifies an HFA with a FA from triglyceride (TG) or diglyceride to produce FAHFAs. Overexpression of wild-type, but not catalytically dead, ATGL increases FAHFA biosynthesis. Chemical inhibition of ATGL or genetic deletion of Atgl inhibits FAHFA biosynthesis and reduces the levels of FAHFA and FAHFA-TG. Levels of endogenous and nascent FAHFAs and FAHFA-TGs are 80-90 per cent lower in adipose tissue of mice in which Atgl is knocked out specifically in the adipose tissue. Increasing TG levels by upregulating diacylglycerol acyltransferase (DGAT) activity promotes FAHFA biosynthesis, and decreasing DGAT activity inhibits it, reinforcing TGs as FAHFA precursors. ATGL biosynthetic transacylase activity is present in human adipose tissue underscoring its potential clinical relevance. In summary, we discovered the first, to our knowledge, biosynthetic enzyme that catalyses the formation of the FAHFA ester bond in mammals. Whereas ATGL lipase activity is well known, our data establish a paradigm shift demonstrating that ATGL transacylase activity is biologically important.


Assuntos
Aciltransferases , Ésteres , Ácidos Graxos , Hidroxiácidos , Aciltransferases/genética , Aciltransferases/metabolismo , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Diglicerídeos , Esterificação , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Humanos , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Resistência à Insulina , Camundongos , Triglicerídeos
10.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458967

RESUMO

Blue force tracking represents an essential task in the field of military applications. A blue force tracking system provides the location information of their own forces on a map to commanders. For the command post, this results in more efficient operation control with increasing safety. In underground structures (e.g., tunnels or subways), the localisation is challenging due to the lack of GNSS signals. This paper presents a localisation system for military or emergency forces tailored to usage in complex underground structures. In a particle filter, position changes from a dual foot-mounted INS are fused with opportunistic UWB ranges and data from a 3D tunnel model to derive position information. A concept to deal with the absence of UWB infrastructure or 3D tunnel models is illustrated. Recurrent neural network methodologies are applied to cope with different motion types of the operators. The evaluation of the positioning algorithm took place in a street tunnel. If a fully installed infrastructure was available, positioning errors under one metre were reached. The results also showed that the INS can bridge UWB outages. A particle-filter-based approach to UWB anchor mapping is presented, and the first simulation results showed its viability.


Assuntos
Algoritmos , , Humanos , Movimento (Física) , Reflexo de Sobressalto , Transtornos Somatoformes
11.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362954

RESUMO

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Assuntos
Aciltransferases/antagonistas & inibidores , Adipócitos , Ácidos Graxos/metabolismo , Lipólise , Aciltransferases/metabolismo , Adipócitos/metabolismo , Animais , Humanos , Lipólise/fisiologia , Camundongos
12.
Forensic Sci Med Pathol ; 18(3): 231-239, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34780010

RESUMO

A 9-year-old boy collapsed shortly after complaining of shortness of breath. Despite immediate resuscitation measures, the boy died. A few weeks earlier, he had received antibiotic treatment for respiratory infection. However, the post-mortem examination revealed an advanced tumor mass of the mediastinum with infiltration of vital structures, which was identified as a small blue round neoplasm with aspects of an extramedullary Ewing-like sarcoma by supplementary histological and immunohistochemical examinations.This dramatic clinical course of events shows that the possible presence of serious diseases should always be considered behind harmless symptoms, even in children.


Assuntos
Sarcoma de Ewing , Sarcoma , Criança , Masculino , Humanos , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/patologia , Antibacterianos
13.
J Biol Chem ; 297(4): 101206, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543623

RESUMO

Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis, the mobilization of stored triacylglycerol. This work provides an important basis for generating reproducible and detailed data on the hydrolytic and transacylation activities of ATGL. We generated full-length and C-terminally truncated ATGL variants fused with various affinity tags and analyzed their expression in different hosts, namely E.coli, the insect cell line Sf9, and the mammalian cell line human embryonic kidney 293T. Based on this screen, we expressed a fusion protein of ATGL covering residues M1-D288 flanked with N-terminal and C-terminal purification tags. Using these fusions, we identified key steps in expression and purification protocols, including production in the E. coli strain ArcticExpress (DE3) and removal of copurified chaperones. The resulting purified ATGL variant demonstrated improved lipolytic activity compared with previously published data, and it could be stimulated by the coactivator protein comparative gene identification-58 and inhibited by the protein G0/G1 switch protein 2. Shock freezing and storage did not affect the basal activity but reduced coactivation of ATGL by comparative gene identification 58. In vitro, the truncated ATGL variant demonstrated acyl-CoA-independent transacylation activity when diacylglycerol was offered as substrate, resulting in the formation of fatty acid as well as triacylglycerol and monoacylglycerol. However, the ATGL variant showed neither hydrolytic activity nor transacylation activity upon offering of monoacylglycerol as substrate. To understand the role of ATGL in different physiological contexts, it is critical for future studies to identify all its different functions and to determine under what conditions these activities occur.


Assuntos
Expressão Gênica , Lipase , Acilação , Animais , Células HEK293 , Humanos , Hidrólise , Lipase/biossíntese , Lipase/química , Lipase/genética , Lipase/isolamento & purificação , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Spodoptera
14.
Commun Biol ; 4(1): 323, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692445

RESUMO

Modulation of adipocyte lipolysis represents an attractive approach to treat metabolic diseases. Lipolysis mainly depends on two enzymes: adipose triglyceride lipase and hormone-sensitive lipase (HSL). Here, we investigated the short- and long-term impact of adipocyte HSL on energy homeostasis using adipocyte-specific HSL knockout (AHKO) mice. AHKO mice fed high-fat-diet (HFD) progressively developed lipodystrophy accompanied by excessive hepatic lipid accumulation. The increased hepatic triglyceride deposition was due to induced de novo lipogenesis driven by increased fatty acid release from adipose tissue during refeeding related to defective insulin signaling in adipose tissue. Remarkably, the fatty liver of HFD-fed AHKO mice reversed with advanced age. The reversal of fatty liver coincided with a pronounced lipodystrophic phenotype leading to blunted lipolytic activity in adipose tissue. Overall, we demonstrate that impaired adipocyte HSL-mediated lipolysis affects systemic energy homeostasis in AHKO mice, whereby with older age, these mice reverse their fatty liver despite advanced lipodystrophy.


Assuntos
Adipócitos/enzimologia , Metabolismo Energético , Fígado Gorduroso/enzimologia , Lipodistrofia/enzimologia , Lipólise , Fígado/metabolismo , Esterol Esterase/deficiência , Adipócitos/patologia , Fatores Etários , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Insulina/metabolismo , Lipodistrofia/genética , Lipodistrofia/patologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , Esterol Esterase/genética , Fatores de Tempo
15.
J Phys Chem Lett ; 12(9): 2471-2475, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33663214

RESUMO

Protein-membrane interactions play key roles in essential cellular processes; studying these interactions in the cell is a challenging task of modern biophysical chemistry. A prominent example is the interaction of human α-synuclein (αS) with negatively charged membranes. It has been well-studied in vitro, but in spite of the huge amount of lipid membranes in the crowded environment of biological cells, to date, no interactions have been detected in cells. Here, we use rapid-scan (RS) electron paramagnetic resonance (EPR) spectroscopy to study αS interactions with negatively charged vesicles in vitro and upon transfection of the protein and lipid vesicles into model cells, i.e., oocytes of Xenopus laevis. We show that protein-vesicle interactions are reflected in RS spectra in vitro and in cells, which enables time-resolved monitoring of protein-membrane interaction upon transfection into cells. Our data suggest binding of a small fraction of αS to endogenous membranes.


Assuntos
Lipídeos de Membrana/química , alfa-Sinucleína/química , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Cinética , Lipídeos de Membrana/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Transfecção , Xenopus laevis , alfa-Sinucleína/metabolismo
16.
Int J Legal Med ; 135(3): 853-859, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33057792

RESUMO

Punches without the use of instruments/objects are a common type of body violence and as such a frequent subject of medicolegal analyses. The assessment of the injuries occurred as well as of the potential of the assault to produce severe body harm is based on objective traces (especially the documented injuries of both parties involved) as well as the-often divergent-descriptions of the event. Quantitative data regarding the punching characteristics that could be used for the assessment are rare and originate mostly in sports science. The aim of this study was to provide physical data enabling/facilitating the assessment of various punching techniques. A total of 50 volunteers took part in our study (29 males and 21 females) and performed severe punches with the fist, with the small finger edge of the hand (karate chop), and with the open hand with both the dominant and the non-dominant hands in randomized order. The strikes were performed on a boxing pad attached to a KISTLER force plate (sampling frequency 10,000 Hz) mounted on a vertical wall. The punching velocity was defined as the hand velocity over the last 10 cm prior to the contact to the pad and ascertained by using a high-speed camera (2000 Hz). Apart from the strike velocity, the maximum force, the impulse (the integral of the force-time curve), the impact duration, and the effective mass of the punch (the ratio between the impulse and the strike velocity) were measured/calculated. The results show a various degree of dependence of the physical parameters of the strikes on the punching technique, gender, hand used, body weight, and other factors. On the other hand, a high degree of variability was observed that is likely attributable to individual punching capabilities. In a follow-up study, we plan to compare the "ordinary" persons with highly trained (boxers etc.) individuals. Even though the results must be interpreted with great caution and a direct transfer of the quantitative parameters to real-world situations is in general terms not possible, the study offers valuable insights and a solid basis for a qualified forensic medical/biomechanical assessment.


Assuntos
Traumatismos Craniocerebrais , Ciências Forenses/métodos , Análise e Desempenho de Tarefas , Violência , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade
17.
Chemphyschem ; 21(22): 2564-2570, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32935420

RESUMO

X-band (ca. 9 GHz) fluid solution rapid-scan electron paramagnetic resonance spectra are reported for radicals with multiline spectra and resolution of hyperfine lines as narrow as 30 mG. Highly-resolved spectra of 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy, diphenylnitroxide, galvinoxyl, and perylene cation radical with excellent signal-to-noise are shown, demonstrating the capabilities of the rapid-scan technique to characterize very small, well-resolved hyperfine couplings. To acquire high resolution spectra the signal bandwidth must be less than the resonator bandwidth. Signal bandwidth is inversely proportional to linewidth and proportional to scan rate. Resonator bandwidth is inversely proportional to resonator Q. Proper selection of scan rate and resonator Q is needed to achieve resolution of closely-spaced narrow EPR lines.


Assuntos
Compostos Benzidrílicos/química , Óxidos N-Cíclicos/química , Óxidos de Nitrogênio/química , Perileno/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Estrutura Molecular
18.
Metabolites ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290093

RESUMO

The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".

19.
Artigo em Alemão | MEDLINE | ID: mdl-31712831

RESUMO

The external examination of a corpse is regulated by federal law and presents physicians and police with a series of challenges. Mostly GPs, but practically every licensed physician, are obliged to complete death certificates, resulting in a very large number of potential physicians, which at the same time means only a small number of cases for each individual. Consequently, this sensitive topic often lacks the experience needed.As already shown in several studies, only very limited possibilities for the correct determination of the cause of death are generally present at the inquest. The legal provisions also represent a certain basic problem, from which further pitfalls can arise.In Munich, the medical association, in cooperation with the Institute of Legal Medicine, organizes a 24­h service with at least one physician on standby, which ensures quality assurance and/or enhancement of this postmortem service through continuous education and further training as well as monthly meetings. The principles and considerations concerning the practicability of such a system will be discussed in this paper.


Assuntos
Medicina Legal , Médicos , Autopsia , Alemanha , Humanos
20.
J Magn Reson ; 303: 17-27, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30991287

RESUMO

We present and discuss the performance of 1H electron-nuclear double resonance (ENDOR) at 263 GHz/9.4 T by employing a prototype, commercial quasi optical spectrometer. Basic instrumental features of the setup are described alongside a comprehensive characterization of the new ENDOR probe head design. The performance of three different ENDOR pulse sequences (Davies, Mims and CP-ENDOR) is evaluated using the 1H BDPA radical. A key feature of 263 GHz spectroscopy - the increase in orientation selectivity in comparison with 94 GHz experiments - is discussed in detail. For this purpose, the resolution of 1H ENDOR spectra at 263 GHz is verified using a representative protein sample containing approximately 15 picomoles of a tyrosyl radical. Davies ENDOR spectra recorded at 5 K reveal previously obscured spectral features, which are interpreted by spectral simulations aided by DFT calculations. Our analysis shows that seven internal proton couplings are detectable for this specific radical if sufficient orientation selectivity is achieved. The results prove the fidelity of 263 GHz experiments in reporting orientation-selected 1H ENDOR spectra and demonstrate that new significant information can be uncovered in complex molecular systems, owing to the enhanced resolution combined with high absolute sensitivity and no compromise in acquisition time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA