Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Parkinsons Dis ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38905058

RESUMO

Background: The serotonin (5-HT) system can manipulate the processing of exogenous L-DOPA in the DA-denervated striatum, resulting in the modulation of L-DOPA-induced dyskinesia (LID). Objective: To characterize the effects of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) or the serotonin transporter (SERT) inhibitor, Citalopram on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease. Methods: MitoPark (MP) mice at 20 weeks of age, subjected to a 14-day administration of L-DOPA/Carbidopa, displayed dyskinesia, referred to as LID. Subsequent investigations explored the effects of 5-HT-modifying agents, such as 5-HTP and Citalopram, on abnormal involuntary movements (AIMs), locomotor activity, neurochemical signals, serotonin transporter activity, and protein expression in the DA-denervated striatum of LID MP mice. Results: 5-HTP exhibited duration-dependent suppressive effects on developing and established LID, especially related to abnormal limb movements observed in L-DOPA-primed MP mice. However, Citalopram, predominantly suppressed abnormal axial movement induced by L-DOPA in LID MP mice. We demonstrated that 5-HTP could decrease L-DOPA-upregulation of DA turnover rates while concurrently upregulating 5-HT metabolism. Additionally, 5-HTP was shown to reduce the expressions of p-ERK and p-DARPP-32 in the striatum of LID MP mice. The effect of Citalopram in alleviating LID development may be attributed to downregulation of SERT activity in the dorsal striatum of LID MP mice. Conclusions: While both single injection of 5-HTP and Citalopram effectively mitigated the development of LID, the difference in mitigation of AIM subtypes may be linked to the unique effects of these two serotonergic agents on L-DOPA-derived DA and 5-HT metabolism.

3.
Geroscience ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563864

RESUMO

Epidemiological studies report an elevated risk of Parkinson's disease (PD) in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed dipeptidyl peptidase 4 (DPP-4) inhibitors. With an objective to characterize clinically translatable doses of DPP-4 inhibitors (gliptins) in a well-characterized PD rodent model, sitagliptin, PF-00734,200 or vehicle were orally administered to rats initiated either 7-days before or 7-days after unilateral medial forebrain bundle 6-hydroxydopamine (6-OHDA) lesioning. Measures of dopaminergic cell viability, dopamine content, neuroinflammation and neurogenesis were evaluated thereafter in ipsi- and contralateral brain. Plasma and brain incretin and DPP-4 activity levels were quantified. Furthermore, brain incretin receptor levels were age-dependently evaluated in rodents, in 6-OHDA challenged animals and human subjects with/without PD. Cellular studies evaluated neurotrophic/neuroprotective actions of combined incretin administration. Pre-treatment with oral sitagliptin or PF-00734,200 reduced methamphetamine (meth)-induced rotation post-lesioning and dopaminergic degeneration in lesioned substantia nigra pars compacta (SNc) and striatum. Direct intracerebroventricular gliptin administration lacked neuroprotective actions, indicating that systemic incretin-mediated mechanisms underpin gliptin-induced favorable brain effects. Post-treatment with a threefold higher oral gliptin dose, likewise, mitigated meth-induced rotation, dopaminergic neurodegeneration and neuroinflammation, and augmented neurogenesis. These gliptin-induced actions associated with 70-80% plasma and 20-30% brain DPP-4 inhibition, and elevated plasma and brain incretin levels. Brain incretin receptor protein levels were age-dependently maintained in rodents, preserved in rats challenged with 6-OHDA, and in humans with PD. Combined GLP-1 and GIP receptor activation in neuronal cultures resulted in neurotrophic/neuroprotective actions superior to single agonists alone. In conclusion, these studies support further evaluation of the repurposing of clinically approved gliptins as a treatment strategy for PD.

4.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627765

RESUMO

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Camundongos , Animais , Dopamina/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Doença de Parkinson/genética , Mitocôndrias , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Modelos Animais de Doenças
5.
Geroscience ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532069

RESUMO

The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.

6.
Cells ; 12(10)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37408199

RESUMO

Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer's disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies.


Assuntos
Microglia , Fator de Necrose Tumoral alfa , Camundongos , Animais , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Camundongos Transgênicos
7.
J Biomed Sci ; 30(1): 16, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872339

RESUMO

BACKGROUND: Quelling microglial-induced excessive neuroinflammation is a potential treatment strategy across neurological disorders, including traumatic brain injury (TBI), and can be achieved by thalidomide-like drugs albeit this approved drug class is compromised by potential teratogenicity. Tetrafluorobornylphthalimide (TFBP) and tetrafluoronorbornylphthalimide (TFNBP) were generated to retain the core phthalimide structure of thalidomide immunomodulatory imide drug (IMiD) class. However, the classical glutarimide ring was replaced by a bridged ring structure. TFBP/TFNBP were hence designed to retain beneficial anti-inflammatory properties of IMiDs but, importantly, hinder cereblon binding that underlies the adverse action of thalidomide-like drugs. METHODS: TFBP/TFNBP were synthesized and evaluated for cereblon binding and anti-inflammatory actions in human and rodent cell cultures. Teratogenic potential was assessed in chicken embryos, and in vivo anti-inflammatory actions in rodents challenged with either lipopolysaccharide (LPS) or controlled cortical impact (CCI) moderate traumatic brain injury (TBI). Molecular modeling was performed to provide insight into drug/cereblon binding interactions. RESULTS: TFBP/TFNBP reduced markers of inflammation in mouse macrophage-like RAW264.7 cell cultures and in rodents challenged with LPS, lowering proinflammatory cytokines. Binding studies demonstrated minimal interaction with cereblon, with no resulting degradation of teratogenicity-associated transcription factor SALL4 or of teratogenicity in chicken embryo assays. To evaluate the biological relevance of its anti-inflammatory actions, two doses of TFBP were administered to mice at 1 and 24 h post-injury following CCI TBI. Compared to vehicle treatment, TFBP reduced TBI lesion size together with TBI-induction of an activated microglial phenotype, as evaluated by immunohistochemistry 2-weeks post-injury. Behavioral evaluations at 1- and 2-weeks post-injury demonstrated TFBP provided more rapid recovery of TBI-induced motor coordination and balance impairments, versus vehicle treated mice. CONCLUSION: TFBP and TFNBP represent a new class of thalidomide-like IMiDs that lower proinflammatory cytokine generation but lack binding to cereblon, the main teratogenicity-associated mechanism. This aspect makes TFBP and TFNBP potentially safer than classic IMiDs for clinical use. TFBP provides a strategy to mitigate excessive neuroinflammation associated with moderate severity TBI to, thereby, improve behavioral outcome measures and warrants further investigation in neurological disorders involving a neuroinflammatory component.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Embrião de Galinha , Humanos , Animais , Camundongos , Talidomida , Doenças Neuroinflamatórias , Agentes de Imunomodulação , Lipopolissacarídeos , Inflamação
8.
Mol Cell Biochem ; 478(11): 2567-2580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36884151

RESUMO

Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation. Considering that lipid metabolism is indispensable to metastatic progression, our goal was the mapping of lipid distributions throughout the metastatic regions of the brain. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of lipids revealed that, relative to surrounding brain tissue, seven long-chain (13-21 carbons long) fatty acylcarnitines, as well as two phosphatidylcholines, two phosphatidylinositols two diacylglycerols, a long-chain phosphatidylethanolamine, and a long-chain sphingomyelin were highly concentrated in the metastatic brain lesion In broad terms, lipids known to be enriched in brain tissues, such as very long-chain (≥ 22 carbons in length) polyunsaturated fatty acid of phosphatidylcholines, phosphatidylethanolamine, sphingomyelins, sulfatides, phosphatidylinositol phosphates, and galactosylceramides, were not found or only found in trace amounts in the metastatic lesion and instead consistently detected in surrounding brain tissues. The data, from this mouse model, highlights an accumulation of fatty acylcarnitines as possible biological makers of a chaotic inefficient vasculature within the metastasis, resulting in relatively inadequate blood flow and disruption of fatty acid ß-oxidation due to ischemia/hypoxia.

9.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902115

RESUMO

To determine the efficacy of PT320 on L-DOPA-induced dyskinetic behaviors, and neurochemistry in a progressive Parkinson's disease (PD) MitoPark mouse model. To investigate the effects of PT320 on the manifestation of dyskinesia in L-DOPA-primed mice, a clinically translatable biweekly PT320 dose was administered starting at either 5 or 17-weeks-old mice. The early treatment group was given L-DOPA starting at 20 weeks of age and longitudinally evaluated up to 22 weeks. The late treatment group was given L-DOPA starting at 28 weeks of age and longitudinally observed up to 29 weeks. To explore dopaminergic transmission, fast scan cyclic voltammetry (FSCV) was utilized to measure presynaptic dopamine (DA) dynamics in striatal slices following drug treatments. Early administration of PT320 significantly mitigated the severity L-DOPA-induced abnormal involuntary movements; PT320 particularly improved excessive numbers of standing as well as abnormal paw movements, while it did not affect L-DOPA-induced locomotor hyperactivity. In contrast, late administration of PT320 did not attenuate any L-DOPA-induced dyskinesia measurements. Moreover, early treatment with PT320 was shown to not only increase tonic and phasic release of DA in striatal slices in L-DOPA-naïve MitoPark mice, but also in L-DOPA-primed animals. Early treatment with PT320 ameliorated L-DOPA-induced dyskinesia in MitoPark mice, which may be related to the progressive level of DA denervation in PD.


Assuntos
Antiparkinsonianos , Discinesia Induzida por Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Levodopa , Doença de Parkinson , Animais , Camundongos , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/uso terapêutico , Preparações de Ação Retardada/uso terapêutico , Modelos Animais de Doenças , Dopamina/efeitos adversos , Dopamina/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Oxidopamina , Doença de Parkinson/tratamento farmacológico
10.
Biomedicines ; 10(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36289711

RESUMO

Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.

11.
Pharmaceutics ; 14(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35631536

RESUMO

(1) Background: An important concomitant of stroke is neuroinflammation. Pomalidomide, a clinically available immunomodulatory imide drug (IMiD) used in cancer therapy, lowers TNF-α generation and thus has potent anti-inflammatory actions. Well-tolerated analogs may provide a stroke treatment and allow evaluation of the role of neuroinflammation in the ischemic brain. (2) Methods: Two novel pomalidomide derivatives, 3,6'-dithiopomalidomide (3,6'-DP) and 1,6'-dithiopomalidomide (1,6'-DP), were evaluated alongside pomalidomide in a rat middle cerebral artery occlusion (MCAo) stroke model, and their anti-inflammatory actions were characterized. (3) Results: Post-MCAo administration of all drugs lowered pro-inflammatory TNF-α and IL1-ß levels, and reduced stroke-induced postural asymmetry and infarct size. Whereas 3,6'- and 1,6'-DP, like pomalidomide, potently bound to cereblon in cellular studies, 3,6'-DP did not lower Ikaros, Aiolos or SALL4 levels-critical intermediates mediating the anticancer/teratogenic actions of pomalidomide and IMiDs. 3,6'-DP and 1,6'-DP lacked activity in mammalian chromosome aberration, AMES and hERG channel assays -critical FDA regulatory tests. Finally, 3,6'- and 1,6'-DP mitigated inflammation across rat primary dopaminergic neuron and microglia mixed cultures challenged with α-synuclein and mouse LPS-challenged RAW 264.7 cells. (4) Conclusion: Neuroinflammation mediated via TNF-α plays a key role in stroke outcome, and 3,6'-DP and 1,6'-DP may prove valuable as stroke therapies and thus warrant further preclinical development.

12.
J Parkinsons Dis ; 12(5): 1545-1565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599497

RESUMO

BACKGROUND: L-DOPA-induced dyskinesia (LID), occurring with aberrant processing of exogenous L-DOPA in the dopamine-denervated striatum, is a main complication of levodopa treatment in Parkinson's disease. OBJECTIVE: To characterize the effects of the vesicular antagonist tetrabenazine (TBZ) on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease. METHODS: 20-week-old MitoPark mice were co-treated or separately administered TBZ and L-DOPA for 14 days. Abnormal involuntary movements (AIMs) and locomotor activity were analyzed. To explore dopamine (DA) transmission, fast scan cyclic voltammetry was used to assess presynaptic DA dynamics in striatal slices following treatments. PET imaging with 4-[18F]-PE2I, ADAM and immunoblotting assays were used to detect receptor protein changes in the DA-denervated striatum. Finally, nigrostriatal tissues were collected for HPLC measures of DA, serotonin and their metabolites. RESULTS: A single injection of TBZ given in the interval between the two L-DOPA/Carbidopa treatments significantly attenuated L-DOPA-induced AIMs expression and locomotor hyperactivity. TBZ was shown to reduce tonic and phasic release of DA following L-DOPA treatment in DA-denervated striatal tissue. In the DA-depleted striatum, TBZ decreased the expression of L-DOPA-enhanced D1 receptors and the serotonin reuptake transporter. Neurochemical analysis indicated that TBZ attenuated L-DOPA-induced surges of DA levels by promoting DA turnover in the nigrostriatal system. CONCLUSIONS: Our findings demonstrate that TBZ diminishes abnormal striatal DA transmission, which involves the ability of TBZ to modulate the presymptomatic dynamics of DA, and then mitigate aberrant release of exogenous L-DOPA from nerve terminals. The results support the potential of repositioning TBZ to counteract LID development.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Discinesia Induzida por Medicamentos/etiologia , Levodopa/efeitos adversos , Camundongos , Oxidopamina/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/complicações , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacologia , Tetrabenazina/metabolismo , Tetrabenazina/farmacologia
13.
Alzheimers Dement ; 18(11): 2327-2340, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35234334

RESUMO

OBJECTIVE: Evaluating the efficacy of 3,6'-dithioPomalidomide in 5xFAD Alzheimer's disease (AD) mice to test the hypothesis that neuroinflammation is directly involved in the development of synaptic/neuronal loss and cognitive decline. BACKGROUND: Amyloid-ß (Aß) or tau-focused clinical trials have proved unsuccessful in mitigating AD-associated cognitive impairment. Identification of new drug targets is needed. Neuroinflammation is a therapeutic target in neurodegenerative disorders, and TNF-α a pivotal neuroinflammatory driver. NEW HYPOTHESIS: AD-associated chronic neuroinflammation directly drives progressive synaptic/neuronal loss and cognitive decline. Pharmacologically mitigating microglial/astrocyte activation without altering Aß generation will define the role of neuroinflammation in AD progression. MAJOR CHALLENGES: Difficulty of TNF-α-lowering compounds reaching brain, and identification of a therapeutic-time window to preserve the beneficial role of neuroinflammatory processes. LINKAGE TO OTHER MAJOR THEORIES: Microglia/astroglia are heavily implicated in maintenance of synaptic plasticity/function in healthy brain and are disrupted by Aß. Mitigation of chronic gliosis can restore synaptic homeostasis/cognitive function.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Peptídeos beta-Amiloides , Cognição , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia , Doenças Neuroinflamatórias , Plasticidade Neuronal , Fator de Necrose Tumoral alfa
14.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361041

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide. It can instigate immediate cell death, followed by a time-dependent secondary injury that results from disproportionate microglial and astrocyte activation, excessive inflammation and oxidative stress in brain tissue, culminating in both short- and long-term cognitive dysfunction and behavioral deficits. Within the brain, the hippocampus is particularly vulnerable to a TBI. We studied a new pomalidomide (Pom) analog, namely, 3,6'-dithioPom (DP), and Pom as immunomodulatory imide drugs (IMiD) for mitigating TBI-induced hippocampal neurodegeneration, microgliosis, astrogliosis and behavioral impairments in a controlled cortical impact (CCI) model of TBI in rats. Both agents were administered as a single intravenous dose (0.5 mg/kg) at 5 h post injury so that the efficacies could be compared. Pom and DP significantly reduced the contusion volume evaluated at 24 h and 7 days post injury. Both agents ameliorated short-term memory deficits and anxiety behavior at 7 days after a TBI. The number of degenerating neurons in the CA1 and dentate gyrus (DG) regions of the hippocampus after a TBI was reduced by Pom and DP. DP, but not Pom, significantly attenuated the TBI-induced microgliosis and DP was more efficacious than Pom at attenuating the TBI-induced astrogliosis in CA1 and DG at 7D after a TBI. In summary, a single intravenous injection of Pom or DP, given 5 h post TBI, significantly reduced hippocampal neurodegeneration and prevented cognitive deficits with a concomitant attenuation of the neuroinflammation in the hippocampus.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Gliose/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Talidomida/análogos & derivados , Animais , Lesões Encefálicas Traumáticas/complicações , Cognição , Gliose/etiologia , Hipocampo/metabolismo , Fatores Imunológicos/farmacologia , Masculino , Memória , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Talidomida/farmacologia , Talidomida/uso terapêutico
15.
Genes (Basel) ; 12(6)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205689

RESUMO

Accumulation of α-Synuclein (αSyn) in nigral dopaminergic neurons is commonly seen in patients with Parkinson's disease (PD). We recently reported that transduction of intracellular single-chain intrabody targeting the 53-87 amino acid residues of human αSyn by recombinant adeno associated viral vector (AAV-NAC32) downregulated αSyn protein in SH-SY5Y cells and rat brain. This study characterizes the behavioral phenotype and dopaminergic protection in animals receiving AAV-NAC32. Our results show that adult DAT-Cre rats selectively overexpress αSyn in nigra dopaminergic neurons after local administration of AAV-DIO-αSyn. These animals develop PD-like phenotype, including bradykinesia and loss of tyrosine hydroxylase (TH) immunoreactivity in substantia nigra pars compacta dorsal tier (SNcd). An injection of AAV-NAC32 to nigra produces a selective antibody against αSyn and normalizes the behavior. AAV-NAC32 significantly increases TH, while reduces αSyn immunoreactivity in SNcd. Altogether, our data suggest that an AAV-mediated gene transfer of NAC32 antibody effectively antagonizes αSyn-mediated dopaminergic degeneration in nigra, which may be a promising therapeutic candidate for synucleinopathy or PD.


Assuntos
Anticorpos/uso terapêutico , Imunoterapia/métodos , Locomoção , Doença de Parkinson/terapia , alfa-Sinucleína/imunologia , Animais , Anticorpos/imunologia , Células CHO , Cricetinae , Cricetulus , Dependovirus/genética , Neurônios Dopaminérgicos/metabolismo , Vetores Genéticos/genética , Masculino , Doença de Parkinson/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Ratos , Ratos Long-Evans , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , alfa-Sinucleína/química , alfa-Sinucleína/genética
16.
Redox Biol ; 46: 102067, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315111

RESUMO

Traumatic brain injury (TBI) is a prevalent head injury worldwide which increases the risk of neurodegenerative diseases. Increased reactive oxygen species (ROS) and inflammatory chemokines after TBI induces secondary effects which damage neurons. Targeting NADPH oxidase or increasing redox systems are ways to reduce ROS and damage. Earlier studies show that C-C motif chemokine ligand 5 (CCL5) has neurotrophic functions such as promoting neurite outgrowth as well as reducing apoptosis. Although CCL5 levels in blood are associated with severity in TBI patients, the function of CCL5 after brain injury is unclear. In the current study, we induced mild brain injury in C57BL/6 (wildtype, WT) mice and CCL5 knockout (CCL5-KO) mice using a weight-drop model. Cognitive and memory functions in mice were analyzed by Novel-object-recognition and Barnes Maze tests. The memory performance of both WT and KO mice were impaired after mild injury. Cognition and memory function in WT mice quickly recovered after 7 days but recovery took more than 14 days in CCL5-KO mice. FJC, NeuN and Hypoxyprobe staining revealed large numbers of neurons damaged by oxidative stress in CCL5-KO mice after mTBI. NADPH oxidase activity show increased ROS generation together with reduced glutathione peroxidase-1 (GPX1) and glutathione (GSH) activity in CCL5-KO mice; this was opposite to that seen in WT mice. CCL5 increased GPX1 expression and reduced intracellular ROS levels which subsequently increased cell survival both in primary neuron cultures and in an overexpression model using SHSY5Y cell. Memory impairment in CCL5-KO mice induced by TBI could be rescued by i.p. injection of the GSH precursor - N-acetylcysteine (NAC) or intranasal delivery of recombinant CCL5 into mice after injury. We conclude that CCL5 is an important molecule for GPX1 antioxidant activation during post-injury day 1-3, and protects hippocampal neurons from ROS as well as improves memory function after trauma.


Assuntos
Concussão Encefálica , Animais , Quimiocina CCL5 , Glutationa Peroxidase/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glutationa Peroxidase GPX1
17.
Mol Psychiatry ; 26(11): 6451-6468, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931731

RESUMO

Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine--CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.


Assuntos
Memória , Sinapses , Animais , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
18.
ACS Pharmacol Transl Sci ; 4(2): 858-869, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860208

RESUMO

GLP-1 agonists have become increasingly interesting as a new Parkinson's disease (PD) clinical treatment strategy. Additional preclinical studies are important to validate this approach and define the disease stage when they are most effective. We hence characterized the efficacy of PT320, a sustained release formulation of the long acting GLP-1 agonist, exenatide, in a progressive PD (MitoPark) mouse model. A clinically translatable biweekly PT320 dose was administered starting at 5 weeks of age and longitudinally evaluated to 24 weeks, and multiple behavioral/cellular parameters were measured. PT320 significantly improved spontaneous locomotor activity and rearing in MitoPark PD mice. "Motivated" behavior also improved, evaluated by accelerating rotarod performance. Behavioral improvement was correlated with enhanced cellular and molecular indices of dopamine (DA) midbrain function. Fast scan cyclic voltammetry demonstrated protection of striatal and nucleus accumbens DA release and reuptake in PT320 treated MitoPark mice. Positron emission tomography showed protection of striatal DA fibers and tyrosine hydroxylase protein expression was augmented by PT320 administration. Early PT320 treatment may hence provide an important neuroprotective therapeutic strategy in PD.

19.
ACS Pharmacol Transl Sci ; 4(2): 980-1000, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860215

RESUMO

Neuroinflammation contributes to delayed secondary cell death following traumatic brain injury (TBI), has the potential to chronically exacerbate the initial insult, and represents a therapeutic target that has largely failed to translate into human efficacy. Thalidomide-like drugs have effectively mitigated neuroinflammation across cellular and animal models of TBI and neurodegeneration but are complicated by adverse actions in humans. We hence developed N-adamantyl phthalimidine (NAP) as a new thalidomide-like drug to mitigate inflammation without binding to cereblon, a key target associated with the antiproliferative, antiangiogenic, and teratogenic actions seen in this drug class. We utilized a phenotypic drug discovery approach that employed multiple cellular and animal models and ultimately examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) TBI in mice. NAP mitigated LPS-induced inflammation across cellular and rodent models and reduced oligomeric α-synuclein and amyloid-ß mediated inflammation. Following CCI TBI, NAP mitigated neuronal and synaptic loss, neuroinflammation, and behavioral deficits, and is unencumbered by cereblon binding, a key protein underpinning the teratogenic and adverse actions of thalidomide-like drugs in humans. In summary, NAP represents a new class of thalidomide-like drugs with anti-inflammatory actions for promising efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.

20.
Front Neurosci ; 15: 635483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833663

RESUMO

Traumatic brain injury (TBI) is the most common cause of morbidity among trauma patients; however, an effective pharmacological treatment has not yet been approved. Individuals with TBI are at greater risk of developing neurological illnesses such as Alzheimer's disease (AD) and Parkinson's disease (PD). The approval process for treatments can be accelerated by repurposing known drugs to treat the growing number of patients with TBI. This review focuses on the repurposing of N-acetyl cysteine (NAC), a drug currently approved to treat hepatotoxic overdose of acetaminophen. NAC also has antioxidant and anti-inflammatory properties that may be suitable for use in therapeutic treatments for TBI. Minocycline (MINO), a tetracycline antibiotic, has been shown to be effective in combination with NAC in preventing oligodendrocyte damage. (-)-phenserine (PHEN), an anti-acetylcholinesterase agent with additional non-cholinergic neuroprotective/neurotrophic properties initially developed to treat AD, has demonstrated efficacy in treating TBI. Recent literature indicates that NAC, MINO, and PHEN may serve as worthwhile repositioned therapeutics in treating TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA