RESUMO
WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.
Assuntos
Regulação Alostérica , Descoberta de Drogas , Inibidores Enzimáticos , Proteômica , Helicase da Síndrome de Werner , Animais , Feminino , Humanos , Masculino , Camundongos , Regulação Alostérica/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Cisteína/efeitos dos fármacos , Cisteína/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Instabilidade de Microssatélites , Modelos Moleculares , Helicase da Síndrome de Werner/antagonistas & inibidores , Helicase da Síndrome de Werner/química , Helicase da Síndrome de Werner/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Morte Celular/efeitos dos fármacos , Trifosfato de Adenosina/metabolismoRESUMO
BACKGROUND: Cannabis is increasingly used both medically and recreationally. With widespread use, there is growing concern about how to identify cannabis-impaired drivers. METHODS: A placebo-controlled randomized double-blinded protocol was conducted to study the effects of cannabis on driving performance. One hundred ninety-one participants were randomized to smoke ad libitum a cannabis cigarette containing placebo or delta-9-tetrahydrocannabinol (THC) (5.9% or 13.4%). Blood, oral fluid (OF), and breath samples were collected along with longitudinal driving performance on a simulator (standard deviation of lateral position [SDLP] and car following [coherence]) over a 5-hour period. Law enforcement officers performed field sobriety tests (FSTs) to determine if participants were impaired. RESULTS: There was no relationship between THC concentrations measured in blood, OF, or breath and SDLP or coherence at any of the timepoints studied (P > 0.05). FSTs were significant (P < 0.05) for classifying participants into the THC group vs the placebo group up to 188 minutes after smoking. Seventy-one minutes after smoking, FSTs classified 81% of the participants who received active drug as being impaired. However, 49% of participants who smoked placebo (controls) were also deemed impaired at this same timepoint. Combining a 2 ng/mL THC cutoff in OF with positive findings on FSTs reduced the number of controls classified as impaired to zero, 86 minutes after smoking the placebo. CONCLUSIONS: Requiring a positive toxicology result in addition to the FST observations substantially improved the classification accuracy regarding possible driving under the influence of THC by decreasing the percentage of controls classified as impaired.
Assuntos
Condução de Veículo , Cannabis , Dirigir sob a Influência , Alucinógenos , Fumar Maconha , Humanos , Dronabinol , Agonistas de Receptores de CanabinoidesRESUMO
IMPORTANCE: Expanding cannabis medicalization and legalization increases the urgency to understand the factors associated with acute driving impairment. OBJECTIVE: To determine, in a large sample of regular cannabis users, the magnitude and time course of driving impairment produced by smoked cannabis of different Δ9-tetrahydrocannabinol (THC) content, the effects of use history, and concordance between perceived impairment and observed performance. DESIGN, SETTING, AND PARTICIPANTS: This double-blind, placebo-controlled parallel randomized clinical trial took place from February 2017 to June 2019 at the Center for Medicinal Cannabis Research, University of California San Diego. Cannabis users were recruited for this study, and analysis took place between April 2020 and September 2021. INTERVENTIONS: Placebo or 5.9% or 13.4% THC cannabis smoked ad libitum. MAIN OUTCOMES AND MEASURES: The primary end point was the Composite Drive Score (CDS), which comprised key driving simulator variables, assessed prior to smoking and at multiple time points postsmoking. Additional measures included self-perceptions of driving impairment and cannabis use history. RESULTS: Of 191 cannabis users, 118 (61.8%) were male, the mean (SD) age was 29.9 (8.3) years, and the mean (SD) days of use in the past month was 16.7 (9.8). Participants were randomized to the placebo group (63 [33.0%]), 5.9% THC (66 [34.6%]), and 13.4% THC (62 [32.5%]). Compared with placebo, the THC group significantly declined on the Composite Drive Score at 30 minutes (Cohen d = 0.59 [95% CI, 0.28-0.90]; P < .001) and 1 hour 30 minutes (Cohen d = 0.55 [95% CI, 0.24-0.86]; P < .001), with borderline differences at 3 hours 30 minutes (Cohen d = 0.29 [95% CI, -0.02 to 0.60]; P = .07) and no differences at 4 hours 30 minutes (Cohen d = -0.03 [95% CI, -0.33 to 0.28]; P = .87). The Composite Drive Score did not differ based on THC content (likelihood ratio χ24 = 3.83; P = .43) or use intensity (quantity × frequency) in the past 6 months (likelihood ratio χ24 = 1.41; P = .49), despite postsmoking blood THC concentrations being higher in those with the highest use intensity. Although there was hesitancy to drive immediately postsmoking, increasing numbers (81 [68.6%]) of participants reported readiness to drive at 1 hour 30 minutes despite performance not improving from initial postsmoking levels. CONCLUSIONS AND RELEVANCE: Smoking cannabis ad libitum by regular users resulted in simulated driving decrements. However, when experienced users control their own intake, driving impairment cannot be inferred based on THC content of the cigarette, behavioral tolerance, or THC blood concentrations. Participants' increasing willingness to drive at 1 hour 30 minutes may indicate a false sense of driving safety. Worse driving performance is evident for several hours postsmoking in many users but appears to resolve by 4 hours 30 minutes in most individuals. Further research is needed on the impact of individual biologic differences, cannabis use history, and administration methods on driving performance. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02849587.
Assuntos
Cannabis , Fumar Maconha , Adulto , Analgésicos/farmacologia , Dronabinol , Feminino , Humanos , Masculino , Percepção , Desempenho PsicomotorRESUMO
SUMMARY: A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION: A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.
Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas/métodos , Receptores Proteína Tirosina Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , TirosinaRESUMO
BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 110 million individuals and led to 2.5 million deaths worldwide. As more individuals are vaccinated, the clinical performance and utility of SARS-CoV-2 serology platforms needs to be evaluated. METHODS: The ability of 4 commercial SARS-CoV-2 serology platforms to detect previous infection or vaccination were evaluated using a cohort of 53 patients who were SARS-CoV-2 PCR positive, 89 SARS-CoV-2-vaccinated healthcare workers (Pfizer or Moderna), and 127 patients who were SARS-CoV-2 negative. Serology results were compared to a cell-based SARS-CoV-2 pseudovirus (PSV) neutralizing antibodies assay. RESULTS: The Roche S-(spike) antibody and Diazyme neutralizing antibodies (NAbs) assays detected adaptive immune response in 100.0% and 90.1% of vaccinated individuals who received 2 doses of vaccine (initial and booster), respectively. The Roche N-(nucleocapsid) antibody assay and Diazyme IgG assay did not detect adaptive immune response in vaccinated individuals. The Diazyme NAbs assay correlated with the PSV SARS-CoV-2 median infective dose (ID50) neutralization titers (R2 = 0.70), while correlation of the Roche S-antibody assay was weaker (R2 = 0.39). Median PSV SARS-CoV-2 ID50 titers more than doubled in vaccinated individuals who received 2 doses of the Moderna vaccine (ID50, 597) compared to individuals who received a single dose (ID50, 284). CONCLUSIONS: The Roche S-antibody and Diazyme NAbs assays robustly detected adaptive immune responses in SARS-CoV-2 vaccinated individuals and SARS-CoV-2 infected individuals. The Diazyme NAbs assay strongly correlates with the PSV SARS-CoV-2 NAbs in vaccinated individuals. Understanding the reactivity of commercially available serology platforms is important when distinguishing vaccination response versus natural infection.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Imunidade Humoral , VacinaçãoRESUMO
Increased prevalence of cannabis consumption and impaired driving are a growing public safety concern. Some states adopted per se driving laws, making it illegal to drive with more than a specified blood concentration of ∆9-tetrahydrocannabinol (THC) in a biological fluid (typically blood). Blood THC concentrations decrease significantly (â¼90%) with delays in specimen collection, suggesting the use of alternative matrices, such as oral fluid (OF). We characterized 10 cannabinoids' concentrations, including THC metabolites, in blood and OF from 191 frequent and occasional users by liquid chromatography with tandem mass spectrometry for up to 6 h after ad libitum smoking. Subjects self-titrated when smoking placebo, 5.9 or 13.4% THC cannabis. Higher maximum blood THC concentrations (Cmax) were observed in individuals who received the 5.9% THC versus the 13.4% THC plant material. In blood, the Cmax of multiple analytes, including THC and its metabolites, were increased in frequent compared to occasional users, whereas there were no significant differences in OF Cmax. Blood THC remained detectable (≥5 ng/mL) at the final sample collection for 14% of individuals who smoked either the 5.9 or 13.4% THC cigarette, whereas 54% had detectable THC in OF when applying the same cutoff. Occasional and frequent cannabis users' profiles were compared, THC was detectable for significantly longer duration in blood and OF from frequent users. Detection rates between frequent and occasional users at multiple per se cutoffs showed larger differences in blood versus OF. Understanding cannabinoid profiles of frequent and occasional users and the subsequent impact on detectability with current drug per se driving limits is important to support forensic interpretations and the development of scientifically supported driving under the influence of cannabis laws.
Assuntos
Canabinoides , Cannabis , Fumar Maconha , Dronabinol , Humanos , Fumar Maconha/epidemiologia , FumantesRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.
Assuntos
Anticorpos Neutralizantes/análise , Testes de Neutralização , SARS-CoV-2/isolamento & purificação , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , Estudos de Coortes , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 110 million individuals and led to 2.5 million deaths worldwide. As more individuals are vaccinated, the clinical performance and utility of SARS-CoV-2 serology platforms needs to be evaluated. Methods: The ability of four commercial SARS-CoV-2 serology platforms to detect previous infection or vaccination were evaluated using a cohort of 53 SARS-CoV-2 PCR-positive patients, 89 SARS-CoV-2-vaccinated healthcare workers (Pfizer or Moderna), and 127 SARS-CoV-2 negative patients. Serology results were compared to a cell based SARS-CoV-2 pseudovirus (PSV) neutralizing antibodies assay. Results: The Roche S-(spike) antibody and Diazyme neutralizing antibodies (NAbs) assays detected adaptive immune response in 100.0% and 90.1% of vaccinated individuals who received two-doses of vaccine (initial and booster), respectively. The Roche N-(nucleocapsid) antibody assay and Diazyme IgG assay did not detect adaptive immune response in vaccinated individuals. The Diazyme Nabs assay correlated with the PSV SARS-CoV-2 ID50 neutralization titers (R2= 0.70), while correlation of the Roche S-antibody assay was weaker (R2= 0.39). Median PSV SARS-CoV-2 ID50 titers more than doubled in vaccinated individuals who received two-doses of the Moderna vaccine (ID50: 597) compared to individuals that received a single dose (ID50: 284). Conclusions: The Roche S-antibody and Diazyme NAbs assays robustly detected adaptive immune responses in SARS-CoV-2 vaccinated individuals and SARS-CoV-2 infected individuals. The Diazyme NAbs assay strongly correlates with the PSV SARS-CoV-2 NAbs in vaccinated individuals. Understanding the reactivity of commercially available serology platforms is important when distinguishing vaccination response versus natural infection.
RESUMO
BACKGROUND: It is unknown whether a positive serology result correlates with protective immunity against SARS-CoV-2. There are also concerns regarding the low positive predictive value of SARS-CoV-2 serology tests, especially when testing populations with low disease prevalence. METHODS: A neutralization assay was validated in a set of PCR-confirmed positive specimens and in a negative cohort. In addition, 9530 specimens were screened using the Diazyme SARS-CoV-2 IgG serology assay and all positive results (N = 164 individuals) were reanalyzed using the neutralization assay, the Roche total immunoglobin assay, and the Abbott IgG assay. The relationship between the magnitude of a positive SARS-CoV-2 serology result and neutralizing activity was determined. Neutralizing antibody titers (50% inhibitory dilution, ID50) were also longitudinally monitored in patients confirmed to have SARS-CoV-2 by PCR. RESULTS: The SARS-CoV-2 neutralization assay had a positive percentage agreement (PPA) of 96.6% with a SARS-CoV-2 PCR test and a negative percentage agreement (NPA) of 98.0% across 100 negative control individuals. ID50 neutralization titers positively correlated with all 3 clinical serology platforms. Longitudinal monitoring of hospitalized PCR-confirmed patients with COVID-19 demonstrated they made high neutralization titers against SARS-CoV-2. PPA between the Diazyme IgG assay alone and the neutralization assay was 50.6%, while combining the Diazyme IgG assay with either the Roche or Abbott platforms increased the PPA to 79.2 and 78.4%, respectively. CONCLUSIONS: These 3 clinical serology assays positively correlate with SARS-CoV-2 neutralization activity observed in patients with COVID-19. All patients confirmed SARS-CoV-2 positive by PCR develop neutralizing antibodies.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Teste Sorológico para COVID-19/estatística & dados numéricos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Análise de Regressão , Estudos Retrospectivos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologiaRESUMO
Δ9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis, leads to impaired cognitive and psychomotor function resulting in an increased risk of fatal motor vehicle collisions and other traumas resulting in death. It is important to measure cannabinoids in postmortem cases to improve understanding of this growing public safety issue. However, postmortem concentrations of THC and its primary inactive metabolite, 11-nor-9-carboxy-tetrahydrocannabinol (THCCOOH), have not been extensively studied. We aim to further characterize postmortem concentrations of THC and THCCOOH in peripheral blood with and without preservation, central blood, and central "serum" to support improved forensic interpretation. Cannabinoids were extracted from blood and "serum" from twenty-five decedents using solid phase extraction followed by quantification using gas chromatography - mass spectrometry. We evaluated the impact of sample preservation, reported central blood-to-peripheral blood (CB:PB) ratios and blood-to-"serum" ratios, and assessed the relationship of CB:PB and postmortem interval for THC and THCCOOH. Correlations of preserved compared to unpreserved blood were strong with r2 > 0.97. The median CB:PB ratios were 1.1 and 1.3 for THC and THCCOOH, respectively. THCCOOH CB:PB was significantly higher than 1.0 (p-value < 0.001). The CB:PB ratio was only weakly correlated with PMI for both compounds. The median blood-to-"serum" ratio was 1.0 for THC and 0.8 for THCCOOH. The blood-to-"serum" ratio of THCCOOH was significantly lower than 1.0 (p-value < 0.001). Results demonstrated minimal potential for postmortem redistribution of THC and THCCOOH and that the ratio of blood-to-"serum" in postmortem samples differs from the blood-to-plasma ratio established in living humans. Based on these results, it is not recommended to apply a correction factor to THC and THCCOOH concentrations from postmortem blood samples. Our study improves the understanding of postmortem cannabinoid concentrations to support forensic interpretation in cases of fatal motor vehicle accidents.
Assuntos
Dronabinol/análogos & derivados , Dronabinol/sangue , Alucinógenos/sangue , Mudanças Depois da Morte , Adolescente , Adulto , Idoso , Dronabinol/farmacocinética , Feminino , Toxicologia Forense , Cromatografia Gasosa-Espectrometria de Massas , Alucinógenos/farmacocinética , Humanos , Masculino , Pessoa de Meia-Idade , Detecção do Abuso de Substâncias , Adulto JovemRESUMO
BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel beta-coronavirus that is responsible for the 2019 coronavirus pandemic. Acute infections should be diagnosed by polymerase chain reaction (PCR) based tests, but serology tests can demonstrate previous exposure to the virus. METHODS: We compared the performance of the Diazyme, Roche, and Abbott SARS-CoV-2 serology assays using 179 negative participants to determine negative percentage agreement (NPA) and in 60 SARS-CoV-2 PCR-confirmed positive patients to determine positive percentage agreement (PPA) at 3 different time frames following a positive SARS-CoV-2 PCR result. RESULTS: At ≥15 days, the PPA (95% CI) was 100 (86.3-100)% for the Diazyme IgM/IgG panel, 96.0 (79.7-99.9)% for the Roche total Ig assay, and 100 (86.3-100)% for the Abbott IgG assay. The NPA (95% CI) was 98.3 (95.2-99.7)% for the Diazyme IgM/IgG panel, 99.4 (96.9-100)% for the Roche total Ig assay, and 98.9 (96.0-99.9)% for the Abbott IgG assay. When the Roche total Ig assay was combined with either the Diazyme IgM/IgG panel or the Abbott IgG assay, the positive predictive value was 100% while the negative predictive value remained greater than 99%. CONCLUSIONS: Our data demonstrates that the Diazyme, Roche, and Abbott SARS-CoV-2 serology assays have similar clinical performances. We demonstrated a low false-positive rate across all 3 platforms and observed that false positives observed on the Roche platform are unique compared to those observed on the Diazyme or Abbott assays. Using multiple platforms in tandem increases the PPVs, which is important when screening populations with low disease prevalence.
Assuntos
Anticorpos Antivirais/isolamento & purificação , Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/instrumentação , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Testes Sorológicos/instrumentação , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/estatística & dados numéricos , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Estudos Longitudinais , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Valor Preditivo dos Testes , Kit de Reagentes para Diagnóstico/estatística & dados numéricos , SARS-CoV-2 , Testes Sorológicos/estatística & dados numéricos , Fatores de TempoRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a novel beta-coronavirus that has recently emerged as the cause of the 2019 coronavirus pandemic (COVID-19). Polymerase chain reaction (PCR) based tests are optimal and recommended for the diagnosis of an acute SARS-CoV-2 infection. Serology tests for viral antibodies provide an important tool to diagnose previous exposure to the virus. Here we evaluate the analytical performance parameters of the Diazyme SARS-CoV-2 IgM/IgG serology assays and describe the kinetics of IgM and IgG seroconversion observed in patients with PCR-confirmed COVID-19 who were admitted to our hospital. METHODS: We validated the performance of the Diazyme assay in 235 presumed SARS-CoV-2 negative subjects to determine specificity. Subsequently, we evaluated the SARS-CoV-2 IgM and IgG seroconversion of 54 PCR-confirmed COVID-19 patients and determined sensitivity of the assay at three different timeframes. RESULT: Sensitivity and specificity for detecting seropositivity at ≥15 days following a positive SARS-CoV-2 PCR result, was 100.0% and 98.7% when assaying for the panel of IgM and IgG. The median time to seropositivity observed for a reactive IgM and IgG result from the date of a positive PCR was 5 days (IQR: 2.75-9 days) and 4 days (IQR: 2.75-6.75 days), respectively. CONCLUSIONS: Our data demonstrate that the Diazyme IgM/IgG assays are suited for the purpose of detecting SARS-CoV-2 IgG and IgM in patients with suspected SARS-CoV-2 infections. For the first time, we report longitudinal data showing the evolution of seroconversion for both IgG and IgM in a cohort of acutely ill patients in the United States. We also demonstrate a low false positive rate in patients who were presumed to be disease free.
Assuntos
Betacoronavirus , Infecções por Coronavirus , Imunoglobulina G , Imunoglobulina M , Pandemias , Pneumonia Viral , Soroconversão , Anticorpos Antivirais/sangue , Anticorpos Antivirais/isolamento & purificação , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/isolamento & purificação , Imunoglobulina M/sangue , Imunoglobulina M/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Monitorização Imunológica/métodos , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Clinical LC-MS/MS assays traditionally require that samples be run in batches with calibration curves in each batch. This approach is inefficient and presents a barrier to random access analysis. We developed an alternative approach called multipoint internal calibration (MPIC) that eliminated the need for batch-mode analysis. METHODS: The new approach used 4 variants of 13C-labeled methotrexate (0.026-10.3 µM) as an internal calibration curve within each sample. One site carried out a comprehensive validation, which included an evaluation of interferences and matrix effects, lower limit of quantification (LLOQ), and 20-day precision. Three sites evaluated assay precision and linearity. MPIC was also compared with traditional LC-MS/MS and an immunoassay. RESULTS: Recovery of spiked analyte was 93%-102%. The LLOQ was validated to be 0.017 µM. Total variability, determined in a 20-day experiment, was 11.5%CV. In a 5-day variability study performed at each site, total imprecision was 3.4 to 16.8%CV. Linearity was validated throughout the calibrator range (r2 > 0.995, slopes = 0.996-1.01). In comparing 40 samples run in each laboratory, the median interlaboratory imprecision was 6.55%CV. MPIC quantification was comparable to both traditional LC-MS/MS and immunoassay (r2 = 0.96-0.98, slopes = 1.04-1.06). Bland-Altman analysis of all comparisons showed biases rarely exceeding 20% when MTX concentrations were >0.4 µM. CONCLUSION: The MPIC method for serum methotrexate quantification was validated in a multisite proof-of-concept study and represents a big step toward random-access LC-MS/MS analysis, which could change the paradigm of mass spectrometry in the clinical laboratory.
Assuntos
Metotrexato/sangue , Espectrometria de Massas em Tandem/métodos , Calibragem , Isótopos de Carbono/química , Cromatografia Líquida de Alta Pressão , Humanos , Imunoensaio , Marcação por Isótopo , Limite de Detecção , Metotrexato/química , Metotrexato/normasRESUMO
Background The widespread availability of cannabis raises concerns regarding its effect on driving performance and operation of complex equipment. Currently, there are no established safe driving limits regarding ∆9-tetrahydrocannabinol (THC) concentrations in blood or breath. Daily cannabis users build up a large body burden of THC with residual excretion for days or weeks after the start of abstinence. Therefore, it is critical to have a sensitive and specific analytical assay that quantifies THC, the main psychoactive component of cannabis, and multiple metabolites to improve interpretation of cannabinoids in blood; some analytes may indicate recent use. Methods A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to quantify THC, cannabinol (CBN), cannabidiol (CBD), 11-hydroxy-THC (11-OH-THC), (±)-11-nor-9-carboxy-Δ9-THC (THCCOOH), (+)-11-nor-Δ9-THC-9-carboxylic acid glucuronide (THCCOOH-gluc), cannabigerol (CBG), and tetrahydrocannabivarin (THCV) in whole blood (WB). WB samples were prepared by solid-phase extraction (SPE) and quantified by LC-MS/MS. A rapid and simple method involving methanol elution of THC in breath collected in SensAbues® devices was optimized. Results Lower limits of quantification ranged from 0.5 to 2 µg/L in WB. An LLOQ of 80 pg/pad was achieved for THC concentrations in breath. Calibration curves were linear (R2>0.995) with calibrator concentrations within ±15% of their target and quality control (QC) bias and imprecision ≤15%. No major matrix effects or drug interferences were observed. Conclusions The methods were robust and adequately quantified cannabinoids in biological blood and breath samples. These methods will be used to identify cannabinoid concentrations in an upcoming study of the effects of cannabis on driving.
Assuntos
Canabinoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Testes Respiratórios , Canabidiol/análise , Canabidiol/sangue , Canabidiol/isolamento & purificação , Canabidiol/normas , Canabinoides/sangue , Canabinoides/isolamento & purificação , Canabinoides/normas , Cromatografia Líquida de Alta Pressão/normas , Ácido Cítrico/química , Dronabinol/análise , Dronabinol/sangue , Dronabinol/isolamento & purificação , Dronabinol/normas , Glucose/análogos & derivados , Glucose/química , Humanos , Limite de Detecção , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes , Fumar , Extração em Fase Sólida , Espectrometria de Massas em Tandem/normas , Estudos de Validação como AssuntoRESUMO
Recent developments in instrumentation and bioinformatics have led to new quantitative mass spectrometry platforms including LC-MS/MS with data-independent acquisition (DIA) and targeted analysis using parallel reaction monitoring mass spectrometry (LC-PRM), which provide alternatives to well-established methods, such as LC-MS/MS with data-dependent acquisition (DDA) and targeted analysis using multiple reaction monitoring mass spectrometry (LC-MRM). These tools have been used to identify signaling perturbations in lung cancers and other malignancies, supporting the development of effective kinase inhibitors and, more recently, providing insights into therapeutic resistance mechanisms and drug repurposing opportunities. However, detection of kinases in biological matrices can be challenging; therefore, activity-based protein profiling enrichment of ATP-utilizing proteins was selected as a test case for exploring the limits of detection of low-abundance analytes in complex biological samples. To examine the impact of different MS acquisition platforms, quantification of kinase ATP uptake following kinase inhibitor treatment was analyzed by four different methods: LC-MS/MS with DDA and DIA, LC-MRM, and LC-PRM. For discovery data sets, DIA increased the number of identified kinases by 21% and reduced missingness when compared with DDA. In this context, MRM and PRM were most effective at identifying global kinome responses to inhibitor treatment, highlighting the value of a priori target identification and manual evaluation of quantitative proteomics data sets. We compare results for a selected set of desthiobiotinylated peptides from PRM, MRM, and DIA and identify considerations for selecting a quantification method and postprocessing steps that should be used for each data acquisition strategy.
Assuntos
Coleta de Dados/métodos , Coleta de Dados/normas , Espectrometria de Massas/métodos , Trifosfato de Adenosina/farmacocinética , Monitoramento de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Fosfotransferases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodosRESUMO
Cancer biologists and other healthcare researchers face an increasing challenge in addressing the molecular complexity of disease. Biomarker measurement tools and techniques now contribute to both basic science and translational research. In particular, liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for multiplexed measurements of protein biomarkers has emerged as a versatile tool for systems biology. Assays can be developed for specific peptides that report on protein expression, mutation, or post-translational modification; discovery proteomics data rapidly translated into multiplexed quantitative approaches. Complementary advances in affinity purification enrich classes of enzymes or peptides representing post-translationally modified or chemically labeled substrates. Here, we illustrate the process for the relative quantification of hundreds of peptides in a single LC-MRM experiment. Desthiobiotinylated peptides produced by activity-based protein profiling (ABPP) using ATP probes and tyrosine-phosphorylated peptides are used as examples. These targeted quantification panels can be applied to further understand the biology of human disease.