Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Neurobiol Dis ; 176: 105961, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526091

RESUMO

Diabetic retinopathy, also defined as microvascular complication of diabetes mellitus, affects the entire neurovascular unit with specific aberrations in every compartment. Neurodegeneration, glial activation and vasoregression are observed consistently in models of diabetic retinopathy. However, the order and the severity of these aberrations varies in different models, which is also true in patients. In this study, we analysed rat models of diabetic retinopathy with similar phenotypes to identify key differences in the pathogenesis. For this, we focussed on intercellular junction-associated gene expression, which are important for the communication and homeostasis within the neurovascular unit. Streptozotocin-injected diabetic Wistar rats, methylglyoxal supplemented Wistar rats and polycystin-2 transgenic (PKD) rats were analysed for neuroretinal function, vasoregression and retinal expression of junction-associated proteins. In all three models, neuroretinal impairment and vasoregression were observed, but gene expression profiling of junction-associated proteins demonstrated nearly no overlap between the three models. However, the differently expressed genes were from the main classes of claudins, connexins and integrins in all models. Changes in Rcor1 expression in diabetic rats and Egr1 expression in PKD rats confirmed the differences in upstream transcription factor level between the models. In PKD rats, a possible role for miRNA regulation was observed, indicated by an upregulation of miR-26b-5p, miR-122-5p and miR-300-3p, which was not observed in the other models. In silico allocation of connexins revealed not only differences in regulated subtypes, but also in affected retinal cell types, as well as connexin specific upstream regulators Sox7 and miR-92a-3p. In this study, we demonstrate that, despite their similar phenotype, models for diabetic retinopathy exhibit significant differences in their pathogenic pathways and primarily affected cell types. These results underline the importance for more sensitive diagnostic tools to identify pathogenic clusters in patients as the next step towards a desperately needed personalized therapy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , MicroRNAs , Ratos , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Expressão Gênica
2.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681723

RESUMO

Microglial activation is implicated in retinal vasoregression of the neurodegenerative ciliopathy-associated disease rat model (i.e., the polycystic kidney disease (PKD) model). microRNA can regulate microglial activation and vascular function, but the effect of microRNA-124 (miR-124) on retinal vasoregression remains unclear. Transgenic PKD and wild-type Sprague Dawley (SD) rats received miR-124 at 8 and 10 weeks of age intravitreally. Retinal glia activation was assessed by immunofluorescent staining and in situ hybridization. Vasoregression and neuroretinal function were evaluated by quantitative retinal morphometry and electroretinography (ERG), respectively. Microglial polarization was determined by immunocytochemistry and qRT-PCR. Microglial motility was examined via transwell migration assays, wound healing assays, and single-cell tracking. Our data showed that miR-124 inhibited glial activation and improved vasoregession, as evidenced by the reduced pericyte loss and decreased acellular capillary formation. In addition, miR-124 improved neuroretinal function. miR-124 shifted microglial polarization in the PKD retina from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype by suppressing TNF-α, IL-1ß, CCL2, CCL3, MHC-II, and IFN-γ and upregulating Arg1 and IL-10. miR-124 also decreased microglial motility in the migration assays. The transcriptional factor of C/EBP-α-PU.1 signaling, suppressed by miR-124 both in vivo (PKD retina) and in vitro (microglial cells), could serve as a key regulator in microglial activation and polarization. Our data illustrate that miR-124 regulates microglial activation and polarization. miR-124 inhibits pericyte loss and thereby alleviates vasoregression and ameliorates neurovascular function.


Assuntos
MicroRNAs/metabolismo , Microglia/citologia , Retina/fisiopatologia , Animais , Antagomirs/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Movimento Celular , Polaridade Celular , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Microglia/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Retina/anatomia & histologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Front Physiol ; 12: 660164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981252

RESUMO

Vascular dysfunction and vasoregression are hallmarks of a variety of inflammatory central nervous system disorders and inflammation-related retinal diseases like diabetic retinopathy. Activation of microglia and the humoral innate immune system are contributing factors. Anti-inflammatory approaches have been proposed as therapies for neurovascular diseases, which include the modulation of microglial activation. The present study aimed at investigating the effects of microglial activation by clodronate-coated liposomes on vasoregression in a model of retinal degeneration. Clodronate treatment over 5 weeks led to an increase in activated CD74+ microglia and completely prevented acellular capillaries and pericyte loss. Gene expression analyses indicated that vasoprotection was due to the induction of vasoprotective factors such as Egr1, Stat3, and Ahr while expression of pro-inflammatory genes remained unchanged. We concluded that activated microglia led to a shift toward induction of pleiotropic protective pathways supporting vasoprotection in neurovascular retinal diseases.

4.
Theranostics ; 10(17): 7857-7871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685025

RESUMO

Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Doenças Renais Policísticas/complicações , Degeneração Retiniana/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Epóxido Hidrolases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Masculino , Microglia/efeitos dos fármacos , Microglia/imunologia , Doenças Renais Policísticas/genética , Ratos , Ratos Transgênicos , Retina/citologia , Retina/efeitos dos fármacos , Retina/imunologia , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/imunologia , Degeneração Retiniana/patologia , Vasos Retinianos/patologia , Canais de Cátion TRPP/genética
5.
Bio Protoc ; 9(19): e3379, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654875

RESUMO

Cardiac, neuronal and renal tubular epithelial cells are the most metabolically active cells in the body. Their fate depends largely on their mitochondria as the primary energy generating system which participates in the control of apoptosis, cell cycle and metabolism. Thus, mitochondrial dysfunction is a hallmark of many chronic diseases including diabetic nephropathy. A drop in mitochondrial bioenergetics efficiency is often associated with altered expression of respiratory chain complexes. Moreover, recent studies demonstrate that cellular proteins can shuttle to mitochondria and modify their function directly. Here we illustrate two mitochondria isolation protocols; one is recommended if the purity of the mitochondrial fraction is a priority such as if the mitochondrial localization of a protein has to be validated, the other if a high yield of intact functional mitochondria is required for functional studies and quantitative Western blotting. Next, we provide a detailed protocol for Western blotting of isolated mitochondria and renal cortex either to prove the purity of isolated fractions or to quantify complexes of the mitochondrial respiratory chain. We used this approach to identify classically cell membrane bound angiotensin II receptors in mitochondria and to study the effect of these receptors on mitochondrial function in early stages of diabetic nephropathy.

6.
Kidney Int ; 94(5): 937-950, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190172

RESUMO

Diabetic nephropathy correlates more closely to defective mitochondria and increased oxidative stress in the kidney than to hyperglycemia. A key driving factor of diabetic nephropathy is angiotensin II acting via the G-protein-coupled cell membrane type 1 receptor. The present study aimed to investigate the role of the angiotensin II type 2 receptor (AT2R) at the early stages of diabetic nephropathy. Using receptor binding studies and immunohistochemistry we found that the mitochondria in renal tubules contain high-affinity AT2Rs. Increased renal mitochondrial AT2R density by transgenic overexpression was associated with reduced superoxide production of isolated mitochondria from non-diabetic rats. Streptozotocin-induced diabetes (28 days) caused a drop in the ATP/oxygen ratio and an increase in the superoxide production of isolated renal mitochondria from wild-type diabetic rats. This correlated with changes in the renal expression profile and increased tubular epithelial cell proliferation. AT2R overexpression in tubular epithelial cells inhibited all diabetes-induced renal changes including a drop in mitochondrial bioenergetics efficiency, a rise in mitochondrial superoxide production, metabolic reprogramming, and increased proliferation. Thus, AT2Rs translocate to mitochondria and can contribute to reno-protective effects at early stages of diabetes. Hence, targeted AT2R overexpression in renal cells may open new avenues to develop novel types of drugs preventing diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Túbulos Renais/fisiologia , Mitocôndrias/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Masculino , Mitocôndrias/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 2 de Angiotensina/análise , Estreptozocina
7.
Science ; 358(6368): 1332-1336, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217578

RESUMO

Progressive kidney diseases are often associated with scarring of the kidney's filtration unit, a condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates FSGS onset and progression is unknown. We identified a small molecule, AC1903, that specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.


Assuntos
Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Hipertensão Renal/tratamento farmacológico , Indazóis/farmacologia , Proteinúria/tratamento farmacológico , Canais de Cátion TRPC/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/genética , Mutação , Podócitos/efeitos dos fármacos , Ratos , Ratos Endogâmicos Dahl , Ratos Transgênicos , Bibliotecas de Moléculas Pequenas , Canais de Cátion TRPC/farmacologia , Proteínas rac1 de Ligação ao GTP/genética
8.
J Histochem Cytochem ; 65(12): 743-755, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29058957

RESUMO

Connective tissue growth factor (CTGF, also named CCN2) plays an important role in the development of tubulointerstitial fibrosis, which most critically determines the progression to end-stage renal failure in autosomal-dominant polycystic kidney disease (ADPKD), the most common genetically caused renal disease. We determined CTGF expression in a well-characterized animal model of human ADPKD, the PKD/Mhm (cy/+) rat. Kidneys of 12 weeks old (cy/+) as well as (+/+) non-affected rats were analyzed for CTGF RNA and protein expression by RT-PCR, Northern and Western blot analyses, in situ hybridization, and IHC. Besides the established expression of CTGF in glomerular cells in kidneys of wild-type (+/+) animals, in (cy/+) rats, CTGF mRNA and protein were robustly expressed in interstitial, stellate-shaped cells, located in a scattered pattern underlying the cystic epithelium and in focal areas of advanced tubulointerstitial remodeling. Renal CTGF mRNA and protein expression levels were significantly higher in (cy/+) rats compared with their (+/+) littermates. Detection of CTGF expression in cells adjacent to cystic epithelium and in areas of marked fibrosis suggests a role in the local response to cyst development and indicates that CTGF may be a relevant factor contributing to tubulointerstitial fibrosis in polycystic kidney disease.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Regulação da Expressão Gênica , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Animais , Modelos Animais de Doenças , Fibrose , Rim/metabolismo , Rim/patologia , Masculino , Rim Policístico Autossômico Dominante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
9.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046476

RESUMO

It is currently controversially discussed whether mesenchymal stem cells (MSC) facilitate cartilage regeneration in vivo by a progenitor- or a nonprogenitor-mediated mechanism. Here, we describe a potentially novel unbiased in vivo cell tracking system based on transgenic donor and corresponding immunocompetent marker-tolerant recipient mouse and rat lines in inbred genetic backgrounds. Tolerance of recipients was achieved by transgenic expression of an immunologically neutral but physicochemically distinguishable variant of the marker human placental alkaline phosphatase (ALPP). In this dual transgenic system, donor lines ubiquitously express WT, heat-resistant ALPP protein, whereas recipient lines express a heat-labile ALPP mutant (ALPPE451G) resulting from a single amino acid substitution. Tolerance of recipient lines to ALPP-expressing cells and tissues was verified by skin transplantation. Using this model, we show that intraarticularly injected MSC contribute to regeneration of articular cartilage in full-thickness cartilage defects mainly via a nonprogenitor-mediated mechanism.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Regeneração/imunologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Cartilagem Articular/citologia , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Injeções Intra-Articulares , Transplante das Ilhotas Pancreáticas , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Transgênicos , Ratos , Ratos Transgênicos , Transplante de Pele
10.
J Diabetes Complications ; 31(6): 1058-1065, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28325697

RESUMO

BACKGROUND & AIM: Activated leukocyte cell adhesion molecule (ALCAM/CD166) functions analogue to the receptor of advanced glycation end products, which has been implicated in the development of diabetic nephropathy (DN). We investigated the expression of ALCAM and its ligand S100B in patients with DN. METHODS: A total of 34 non-diabetic patients, 29 patients with type 2 diabetes and normal albuminuria and 107 patients with type 2 diabetes complicated with DN were assessed for serum concentration of soluble ALCAM (sALCAM) by ELISA. Expression of ALCAM and S100B in kidney histology from patients with DN was determined by immunohistochemistry. Cell expression of ALCAM and S100B was analyzed through confocal immunofluorescence microscopy. RESULTS: Serum concentration of sALCAM was increased in diabetic patients with DN compared to non-diabetic (59.85±14.99ng/ml vs. 126.88±66.45ng/ml, P<0.0001). Moreover sALCAM correlated positively with HbA1c (R=0.31, P<0.0001), as well as with the stages of chronic kidney disease and negatively correlated with eGFR (R=-0.20, P<0.05). In diabetic patients with normal albuminuria sALCAM was increased compared to patients with DN (126.88±66.45ng/ml vs. 197.50±37.17ng/ml, P<0.0001). In diabetic patients, ALCAM expression was significantly upregulated in both the glomeruli and tubules (P<0.001). ALCAM expression in the glomeruli correlated with presence of sclerosis (R=0.25, P<0.001) and localized mainly in the podocytes supporting the hypothesis that membrane bound ALCAM drives diabetic nephropathy and thus explaining sALCAM decrease in diabetic patients with DN. The expression of S100B was increased significantly in the glomeruli of diabetic patients (P<0.001), but not in the tubules. S100B was as well localized in the podocytes. CONCLUSIONS: This study identifies for the first time ALCAM as a potential mediator in the late complications of diabetes in the kidney.


Assuntos
Antígenos CD/sangue , Biomarcadores/sangue , Moléculas de Adesão Celular Neuronais/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/diagnóstico , Proteínas Fetais/sangue , Adulto , Idoso , Antígenos CD/análise , Antígenos CD/fisiologia , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/análise , Moléculas de Adesão Celular Neuronais/fisiologia , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Progressão da Doença , Feminino , Proteínas Fetais/análise , Proteínas Fetais/fisiologia , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Prognóstico
11.
Int J Mol Sci ; 17(6)2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27231899

RESUMO

Expression of kidney injury molecule-1 (Kim-1) is rapidly upregulated following tubular injury, constituting a biomarker for acute kidney damage. We examined the renal localization of Kim-1 expression in PKD/Mhm (polycystic kidney disease, Mannheim) (cy/+) rats (cy: mutated allel, +: wild type allel), an established model for autosomal dominant polycystic kidney disease, with chronic, mainly proximal tubulointerstitial alterations. For immunohistochemistry or Western blot analysis, kidneys of male adult heterozygously-affected (cy/+) and unaffected (+/+) littermates were perfusion-fixed or directly removed. Kim-1 expression was determined using peroxidase- or fluorescence-linked immunohistochemistry (alone or in combination with markers for tubule segments or differentiation). Compared to (+/+), only in (cy/+) kidneys, a chronic expression of Kim-1 could be detected by Western blot analysis, which was histologically confined to an apical cellular localization in areas of cystically-transformed proximal tubules with varying size and morphology, but not in distal tubular segments. Kim-1 was expressed by cystic epithelia exhibiting varying extents of dedifferentiation, as shown by double labeling with aquaporin-1, vimentin or osteopontin, yielding partial cellular coexpression. In this model, in contrast to other known molecules indicating renal injury and/or repair mechanisms, the chronic renal expression of Kim-1 is strictly confined to proximal cysts. Its exact role in interfering with tubulo-interstitial alterations in polycystic kidney disease warrants future investigations.


Assuntos
Moléculas de Adesão Celular/metabolismo , Túbulos Renais Proximais/metabolismo , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Animais , Biomarcadores/metabolismo , Desdiferenciação Celular , Modelos Animais de Doenças , Túbulos Renais Proximais/patologia , Masculino , Especificidade de Órgãos , Ratos , Regulação para Cima
12.
J Mol Med (Berl) ; 94(1): 61-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26256830

RESUMO

UNLABELLED: In the heart, secretory renin promotes hypertrophy, apoptosis, necrosis, fibrosis, and cardiac failure through angiotensin generation from angiotensinogen. Thus, inhibitors of the renin-angiotensin system are among the most potent drugs in the treatment of cardiac failure. Renin transcripts have been identified encoding a renin isoform with unknown targets and unknown functions that are localized to the cytosol and mitochondria. We hypothesize that this isoform, in contrast to secretory renin, exerts cardioprotective effects in an angiotensin-independent manner. Cells overexpressing cytosolic renin were generated by transfection or obtained from CX(exon2-9)renin transgenic rats. Overexpression of cytosolic renin reduced the rate of necrosis in H9c2 cardiomyoblasts and in primary cardiomyocytes after glucose depletion. These effects were not mediated by angiotensin generation since an inhibitor of renin activity did not influence the in vitro effects. siRNA-mediated knockdown of endogenous cytosolic renin increased the rate of necrosis and aggravated the pro-necrotic effects of glucose depletion. Isolated perfused hearts obtained from transgenic rats overexpressing cytosolic renin exhibited a 50% reduction of infarct size after ischemia-reperfusion injury. Cytosolic renin is essential for survival, both under basal conditions and during glucose starvation. The protective effects are angiotensin-independent and contrary to the known actions of secretory renin. KEY MESSAGES: A cytosolic isoform of renin with unknown functions is expressed in the heart. Cytosolic renin diminishes ischemia induced damage to the heart. The protective effects of cytosolic renin contradict the known function of secretory renin. The effects of cytosolic renin are not mediated via angiotensin generation. Renin-binding protein is a potential target for cytosolic renin.


Assuntos
Cardiotônicos/metabolismo , Isquemia Miocárdica/prevenção & controle , Necrose/prevenção & controle , Renina/metabolismo , Angiotensinogênio/metabolismo , Animais , Células Cultivadas , Citosol/metabolismo , Glucose/metabolismo , Coração/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Isoformas de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Renina/antagonistas & inibidores , Renina/biossíntese , Renina/genética , Sistema Renina-Angiotensina/fisiologia
13.
PLoS One ; 10(9): e0136781, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26327442

RESUMO

Mutations in Ankyrin repeat and sterile alpha motif domain containing 6 (ANKS6) play a causative role in renal cyst formation in the PKD/Mhm(cy/+) rat model of polycystic kidney disease and in nephronophthisis in humans. A network of protein partners of ANKS6 is emerging and their functional characterization provides important clues to understand the role of ANKS6 in renal biology and in mechanisms involved in the formation of renal cysts. Following experimental confirmation of interaction between ANKS6and ANKS3 using a Yeast two hybrid system, we demonstrated that binding between the two proteins occurs through their sterile alpha motif (SAM) and that the amino acid 823 in rat ANSK6 is key for this interaction. We further showed their interaction by co-immunoprecipitation and showed in vivo in mice that ANKS3 is present in renal cilia. Downregulated expression of Anks3 in vivo in mice by Locked Nucleic Acid (LNA) modified antisense oligonucleotides was associated with increased transcription of vasopressin-induced genes, suggesting changes in renal water permeability, and altered transcription of genes encoding proteins involved in cilium structure, apoptosis and cell proliferation. These data provide experimental evidence of ANKS3-ANKS6 direct interaction through their SAM domain and co-localisation in mouse renal cilia, and shed light on molecular mechanisms indirectly mediated by ANKS6 in the mouse kidney, that may be affected by altered ANKS3-ANKS6 interaction. Our results contribute to improved knowledge of the structure and function of the network of proteins interacting with ANKS6, which may represent therapeutic targets in cystic diseases.


Assuntos
Repetição de Anquirina/genética , Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Rim/metabolismo , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Vasopressinas/metabolismo , Motivos de Aminoácidos/genética , Animais , Apoptose/genética , Proteínas de Transporte/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Cílios/genética , Regulação para Baixo/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Ligação Proteica/genética , Transdução de Sinais/genética , Vasopressinas/genética
14.
Kidney Int ; 88(2): 299-310, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26039630

RESUMO

The ankyrin repeat and sterile α motif (SAM) domain-containing six gene (Anks6) is a candidate for polycystic kidney disease (PKD). Originally identified in the PKD/Mhm(cy/+) rat model of PKD, the disease is caused by a mutation (R823W) in the SAM domain of the encoded protein. Recent studies support the etiological role of the ANKS6 SAM domain in human cystic diseases, but its function in kidney remains unknown. To investigate the role of ANKS6 in cyst formation, we screened an archive of N-ethyl-N-nitrosourea-treated mice and derived a strain carrying a missense mutation (I747N) within the SAM domain of ANKS6. This mutation is only six amino acids away from the PKD-causing mutation (R823W) in cy/+ rats. Evidence of renal cysts in these mice confirmed the crucial role of the SAM domain of ANKS6 in kidney function. Comparative phenotype analysis in cy/+ rats and our Anks6(I747N) mice further showed that the two models display noticeably different PKD phenotypes and that there is a defective interaction between ANKS6 with ANKS3 in the rat and between ANKS6 and BICC1 (bicaudal C homolog 1) in the mouse. Thus, our data demonstrate the importance of ANKS6 for kidney structure integrity and the essential mediating role of its SAM domain in the formation of protein complexes.


Assuntos
Proteínas de Transporte/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Rim/metabolismo , Rim/patologia , Proteínas Nucleares/genética , Animais , Repetição de Anquirina , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Feminino , Homozigoto , Humanos , Rim/embriologia , Doenças Renais Císticas/fisiopatologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Alça do Néfron/metabolismo , Alça do Néfron/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Fenótipo , Podócitos/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos
15.
PLoS One ; 9(7): e102013, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013951

RESUMO

Rats expressing a transgenic polycystic kidney disease (PKD) gene develop photoreceptor degeneration and subsequent vasoregression, as well as activation of retinal microglia and macroglia. To target the whole neuroglialvascular unit, neuro- and vasoprotective Erythropoietin (EPO) was intraperitoneally injected into four-week old male heterozygous PKD rats three times a week at a dose of 256 IU/kg body weight. For comparison EPO-like peptide, lacking unwanted side effects of EPO treatment, was given five times a week at a dose of 10 µg/kg body weight. Matched EPO treated Sprague Dawley and water-injected PKD rats were held as controls. After four weeks of treatment the animals were sacrificed and analysis of the neurovascular morphology, glial cell activity and pAkt localization was performed. The number of endothelial cells and pericytes did not change after treatment with EPO or EPO-like peptide. There was a nonsignificant reduction of migrating pericytes by 23% and 49%, respectively. Formation of acellular capillaries was significantly reduced by 49% (p<0.001) or 40% (p<0.05). EPO-treatment protected against thinning of the central retina by 10% (p<0.05), a composite of an increase of the outer nuclear layer by 12% (p<0.01) and in the outer segments of photoreceptors by 26% (p<0.001). Quantification of cell nuclei revealed no difference. Microglial activity, shown by gene expression of CD74, decreased by 67% (p<0.01) after EPO and 36% (n.s.) after EPO-like peptide treatment. In conclusion, EPO safeguards the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. This finding strengthens EPO in its protective capability for the whole neuroglialvascular unit.


Assuntos
Eritropoetina/química , Peptídeos/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Animais , Modelos Animais de Doenças , Epoetina alfa , Masculino , Peptídeos/química , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química
16.
PLoS One ; 8(6): e61631, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755094

RESUMO

BACKGROUND: Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2. METHODS: Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution. FINDINGS: Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators. INTERPRETATION: Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress is altered as compared to control. The dislocation of Kir4.1 will disturb the retinal potassium and water homeostasis, and osmotic generation of free radicals and inflammatory lipids may contribute to neurovascular injury.


Assuntos
Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/patologia , Canais de Cátion TRPP/metabolismo , Envelhecimento/patologia , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Membrana Celular/metabolismo , Separação Celular , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Mediadores da Inflamação/metabolismo , Filamentos Intermediários/metabolismo , Nestina/genética , Nestina/metabolismo , Osmose , Estresse Oxidativo , Células Fotorreceptoras de Vertebrados/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transporte Proteico , Ratos Sprague-Dawley , Degeneração Retiniana/metabolismo , Vimentina/genética , Vimentina/metabolismo
17.
Nephrol Dial Transplant ; 28(8): 2045-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23543593

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human inherited diseases. Modifier genes seem to modulate the disease progression and might therefore be promising drug targets. Although a number of modifier loci have been already identified, no modifier gene has been proven to be a real modifier yet. METHODS: Gene expression profiling of two substrains of the Han:SPRD rat, namely PKD/Mhm and PKD/US, both harboring the same mutation, was conducted in 36-day-old animals. Catechol-O-methyltransferase (Comt) was identified as a potential modifier gene. A 3-month treatment with tolcapone, a selective inhibitor of Comt, was carried out in PKD/Mhm and PKD/US (cy/+) animals. RESULTS: Comt is localized within a known modifier locus of PKD (MOP2). The enzyme encoding gene was found upregulated in the more severely affected PKD/Mhm substrain and was hence presumed to be a putative modifier gene of PKD. The treatment with tolcapone markedly attenuated the loss of renal function, inhibited renal enlargement, shifted the size distribution of renal cysts and retarded cell proliferation, apoptosis, inflammation and fibrosis development in affected (cy/+) male and female PKD/Mhm and PKD/US rats. CONCLUSIONS: Comt has been confirmed to be the first reported modifier gene for PKD and tolcapone offers a promising drug for treating PKD.


Assuntos
Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Nitrofenóis/farmacologia , Doenças Renais Policísticas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Doenças Renais Policísticas/patologia , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolcapona
18.
Cell Physiol Biochem ; 30(6): 1436-43, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23171816

RESUMO

BACKGROUND: The pathogenesis of Alzheimer's disease (AD) is characterized by neuronal injury, activation of microglia and astrocytes, deposition of amyloid-ß and secondary vessel degeneration. In the polycystic kidney disease (PKD) rat model, we observed neuronal injury, microglial activation and vasoregression. We speculated that this neuroretinal degeneration shares important pathogenetic steps with AD. Therefore, we determined the activation of astrocytes and the accumulation of amyloid-ß in PKD retinae. METHODS: Immunohistochemistry of PKD retinae for vimentin, carboxymethyllysin, beta-Amyloid 1-42, High-Mobility-Group- Protein B1 and amyloid protein precursor was performed. RESULTS: Adjunct to astrocyte activation, accumulation of beta-Amyloid 1-42 and High-Mobility-Group-Protein B1 in astrocytes and around vessels of the superficial network was found in PKD retinae prior to the onset of vasoregression. Amyloid precursor protein was localized adjacent to the outer segment of photoreceptors in PKD and control rats. The parallel appearance of AD-related peptides indicates an alarmine based response to photoreceptor degeneration and secondary vasoregression. CONCLUSION: The model has broad overlap with AD and may be suitable to study beneficial pharmacological concepts.


Assuntos
Doença de Alzheimer/patologia , Degeneração Retiniana/patologia , Vasos Retinianos/fisiopatologia , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Neuroglia/metabolismo , Doenças Renais Policísticas/complicações , Doenças Renais Policísticas/fisiopatologia , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/fisiopatologia , Vasos Retinianos/patologia , Estresse Fisiológico , Vimentina/metabolismo
19.
Am J Physiol Endocrinol Metab ; 302(9): E1044-54, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22318954

RESUMO

This study aimed to elucidate the role of the AT(2) receptor (AT(2)R), which is expressed and upregulated in the adrenal zona glomerulosa (ZG) under conditions of increased aldosterone production. We developed a novel transgenic rat (TGR; TGRCXmAT(2)R) that overexpresses the AT(2)R in the adrenal gland, heart, kidney, brain, skeletal muscle, testes, lung, spleen, aorta, and vein. As a consequence the total angiotensin II (Ang II) binding sites increased 7.8-fold in the kidney, 25-fold in the heart, and twofold in the adrenals. The AT(2)R number amounted to 82-98% of total Ang II binding sites. In the ZG of TGRCXmAT(2)R, the AT(2)R density was elevated threefold relative to wild-type (WT) littermates, whereas AT(1)R density remained unchanged. TGRCXmAT(2)R rats were viable and exhibited normal reproduction, blood pressure, and kidney function. Notably, a slightly but significantly reduced body weight and a moderate increase in plasma urea were observed. With respect to adrenal function, 24-h urinary and plasma aldosterone concentrations were unaffected in TGRCXmAT(2)R at baseline. Three and 14 days of Ang II infusion (300 ng·min(-1)·kg(-1)) increased plasma aldosterone levels in WT and in TGR. These changes were completely abolished by the AT(1)R blocker losartan. Of note, glomerulosa cell proliferation, as indicated by the number of Ki-67-positive glomerulosa cells, was stimulated by Ang II in TGR and WT rats; however, this increase was significantly attenuated in TGR overexpressing the AT(2)R. In conclusion, AT(2)R in the adrenal ZG inhibits Ang II-induced cell proliferation but has no obvious lasting effect on the regulation of the aldosterone production at the investigated stages.


Assuntos
Aldosterona/fisiologia , Modelos Animais , Ratos Transgênicos , Receptor Tipo 2 de Angiotensina/metabolismo , Zona Glomerulosa/fisiologia , Angiotensina II/fisiologia , Animais , Proliferação de Células , Regulação da Expressão Gênica/fisiologia , Ratos , Regulação para Cima , Zona Glomerulosa/citologia
20.
Kidney Int ; 80(9): 959-969, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21814176

RESUMO

Podocytes have a significant role in establishing selective permeability of the glomerular filtration barrier. Sustained renin-angiotensin-aldosterone system activation is crucial to the pathogenesis of podocyte injury, but the mechanisms by which angiotensin II modulates podocyte survival due to physiological or injurious stimuli remain unclear. Here, we used proteomic analysis to find new mediators of angiotensin II-induced podocyte injury. Antioxidant protein peroxiredoxin 2 expression was decreased in cultured podocytes stimulated with angiotensin II. Peroxiredoxin 2 was found to be expressed in podocytes in vivo, and its expression was decreased in the glomeruli of rats transgenic for angiotensin II type 1 receptors in a podocyte-specific manner, or in rats infused with angiotensin II. Downregulation of peroxiredoxin 2 in podocytes resulted in increased reactive oxygen species release, protein overoxidation, and inhibition of the Akt pathway. Both treatment with angiotensin II and downregulation of peroxiredoxin 2 expression led to apoptosis of podocytes. Thus, peroxiredoxin 2 is an important modulator of angiotensin II-induced podocyte injury.


Assuntos
Angiotensina II/metabolismo , Apoptose , Glomérulos Renais/enzimologia , Peroxirredoxinas/metabolismo , Podócitos/enzimologia , Angiotensina II/administração & dosagem , Animais , Linhagem Celular , Regulação para Baixo , Eletroforese em Gel Bidimensional , Humanos , Infusões Subcutâneas , Glomérulos Renais/patologia , Camundongos , Estresse Oxidativo , Fosforilação , Podócitos/patologia , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA