Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Neurogenet ; 34(1): 92-105, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965876

RESUMO

Amyloid precursor protein (APP), the precursor of amyloid beta peptide, plays a central role in Alzheimer's disease (AD), a pathology characterized by memory decline and synaptic loss upon aging. Understanding the physiological role of APP is fundamental in deciphering the progression of AD, and several studies suggest a synaptic function via protein-protein interactions. Nevertheless, it remains unclear whether and how these interactions contribute to memory. In Drosophila, we previously showed that APP-like (APPL), the fly APP homolog, is required for aversive associative memory in the olfactory memory center, the mushroom body (MB). In the present study, we show that APPL is required for appetitive long-term memory (LTM), another form of associative memory, in a specific neuronal subpopulation of the MB, the α'/ß' Kenyon cells. Using a biochemical approach, we identify the synaptic MAGUK (membrane-associated guanylate kinase) proteins X11, CASK, Dlgh2 and Dlgh4 as interactants of the APP intracellular domain (AICD). Next, we show that the Drosophila homologs CASK and Dlg are also required for appetitive LTM in the α'/ß' neurons. Finally, using a double RNAi approach, we demonstrate that genetic interactions between APPL and CASK, as well as between APPL and Dlg, are critical for appetitive LTM. In summary, our results suggest that APPL contributes to associative long-term memory through its interactions with the main synaptic scaffolding proteins CASK and Dlg. This function should be conserved across species.


Assuntos
Comportamento Apetitivo/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Memória de Longo Prazo/fisiologia , Corpos Pedunculados/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/fisiologia
2.
iScience ; 6: 199-211, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30240610

RESUMO

Bone-resorbing osteoclasts play a central role in bone remodeling and its pathology. To digest bone, osteoclasts re-organize both F-actin, to assemble podosomes/sealing zones, and membrane traffic, to form bone-facing ruffled borders enriched in lysosomal membrane proteins. It remains elusive how these processes are coordinated. Here, we show that ARAP1 (ArfGAP with RhoGAP domain, ankyrin repeat and PH domain-containing protein 1) fulfills this function. At podosomes/sealing zones, ARAP1 is part of a protein complex where its RhoGAP domain regulates actin dynamics. At endosomes, ARAP1 interacts with AP-3 adaptor complexes where its Arf-GAP domain regulates the Arf1-dependent AP-3 binding to membranes and, consequently lysosomal membrane protein transport to ruffled borders. Accordingly, ARAP1 or AP-3 depletion in osteoclasts alters their capacity to digest bone in vitro. and AP-3δ-deficient mocha mice, a model of the Hermansky-Pudlak storage pool syndrome, develop osteoporosis. Thus, ARAP1 bridges F-actin and membrane dynamics in osteoclasts for proper bone homeostasis.

3.
Cell Rep ; 20(9): 2087-2099, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28854360

RESUMO

Clathrin/adaptor protein-1-coated carriers connect the secretory and the endocytic pathways. Carrier biogenesis relies on distinct protein networks changing membrane shape at the trans-Golgi network, each regulating coat assembly, F-actin-based mechanical forces, or the biophysical properties of lipid bilayers. How these different hubs are spatiotemporally coordinated remains largely unknown. Using in vitro reconstitution systems, quantitative proteomics, and lipidomics, as well as in vivo cell-based assays, we characterize the protein networks controlling membrane lipid composition, membrane shape, and carrier scission. These include PIP5K1A and phospholipase C-beta 3 controlling the conversion of PI[4]P into diacylglycerol. PIP5K1A binding to RAC1 provides a link to F-actin-based mechanical forces needed to tubulate membranes. Tubular membranes then recruit the BAR-domain-containing arfaptin-1/2 guiding carrier scission. These findings provide a framework for synchronizing the chemical/biophysical properties of lipid bilayers, F-actin-based mechanical forces, and the activity of proteins sensing membrane shape during clathrin/adaptor protein-1-coated carrier biogenesis.


Assuntos
Actinas/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Metabolismo dos Lipídeos , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Diglicerídeos/biossíntese , Células HeLa , Humanos , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipase C beta/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Polimerização , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
J Cell Sci ; 130(18): 3124-3140, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754686

RESUMO

L-leucyl-L-leucine methyl ester (LLOMe) induces apoptosis, which is thought to be mediated by release of lysosomal cysteine cathepsins from permeabilized lysosomes into the cytosol. Here, we demonstrated in HeLa cells that apoptotic as well as sub-apoptotic concentrations of LLOMe caused rapid and complete lysosomal membrane permeabilization (LMP), as evidenced by loss of the proton gradient and release into the cytosol of internalized lysosomal markers below a relative molecular mass of 10,000. However, there was no evidence for the release of cysteine cathepsins B and L into the cytosol; rather they remained within lysosomes, where they were rapidly inactivated and degraded. LLOMe-induced adverse effects, including LMP, loss of cysteine cathepsin activity, caspase activation and cell death could be reduced by inhibition of cathepsin C, but not by inhibiting cathepsins B and L. When incubated with sub-apoptotic LLOMe concentrations, lysosomes transiently lost protons but annealed and re-acidified within hours. Full lysosomal function required new protein synthesis of cysteine cathepsins and other hydrolyses. Our data argue against the release of lysosomal enzymes into the cytosol and their proposed proteolytic signaling during LLOMe-induced apoptosis.


Assuntos
Catepsinas/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Dipeptídeos/farmacologia , Lisossomos/metabolismo , Apoptose/efeitos dos fármacos , Citosol/efeitos dos fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Lisossomos/ultraestrutura , Modelos Biológicos , Permeabilidade/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Prótons
5.
PLoS One ; 11(10): e0164829, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760174

RESUMO

Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role of the membrane scaffolding F-BAR-Proline-Serine-Threonine Phosphatase Interacting Proteins (PSTPIP) 1 and 2 in this process. Whereas PSTPIP2 regulates podosome assembly, PSTPIP1 regulates their disassembly. PSTPIP1 recruits, through its F-BAR domain, the protein tyrosine phosphatase non-receptor type 6 (PTPN6) that de-phosphophorylates the phosphatidylinositol 5-phosphatases SHIP1/2 bound to the SH3 domain of PSTPIP1. Depletion of any component of this complex prevents sealing zone disassembly and increases osteoclast activity. Thus, our results illustrate the importance of BAR domain proteins in podosome structure and dynamics, and identify a new PSTPIP1/PTPN6/SHIP1/2-dependent negative feedback mechanism that counterbalances Src and PI(3,4,5)P3 signalling to control osteoclast cell polarity and activity during bone resorption.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Proteínas do Citoesqueleto/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Podossomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Domínios Proteicos , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteômica , Células RAW 264.7 , Interferência de RNA
6.
Nat Commun ; 7: 13233, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775035

RESUMO

The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) facilitates fast axonal transport in neurons. However, given that GAPDH does not produce ATP, it is unclear whether glycolysis per se is sufficient to propel vesicles. Although many proteins regulating transport have been identified, the molecular composition of transported vesicles in neurons has yet to be fully elucidated. Here we selectively enrich motile vesicles and perform quantitative proteomic analysis. In addition to the expected molecular motors and vesicular proteins, we find an enrichment of all the glycolytic enzymes. Using biochemical approaches and super-resolution microscopy, we observe that most glycolytic enzymes are selectively associated with vesicles and facilitate transport of vesicles in neurons. Finally, we provide evidence that mouse brain vesicles produce ATP from ADP and glucose, and display movement in a reconstituted in vitro transport assay of native vesicles. We conclude that transport of vesicles along microtubules can be autonomous.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Glicólise , Neurônios/metabolismo , Vesículas Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Neurônios/citologia , Proteoma/metabolismo , Proteômica/métodos , Ratos
7.
PLoS One ; 11(8): e0159824, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27490675

RESUMO

Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention.


Assuntos
Polpa Dentária/metabolismo , Espectrometria de Massas , Proteoma/análise , Adolescente , Antígenos CD/análise , Antígenos CD/genética , Biotina/química , Células Cultivadas , Polpa Dentária/citologia , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteoma/genética , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
8.
Proteomics ; 16(19): 2545-2556, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27350065

RESUMO

Bone is a dynamic tissue whose remodeling throughout life is orchestrated by repeated cycles of destruction mediated by osteoclasts and rebuilding by osteoblasts. Current understanding of osteoclast biology has largely relied on the generation of knockout mice exhibiting an abnormal bone phenotype. This has provided a better understanding of osteoclast biology and the key proteins that support osteoclast function. However, mouse models alone do not provide an integrated view on protein networks and post-translational modifications that might be important for osteoclast function. During the past years, a number of MS-based quantitative methods have been developed to investigate the complexity of biological systems. This review will summarize how such approaches have contributed to the understanding of osteoclast differentiation and function.


Assuntos
Osteoclastos/metabolismo , Proteômica/métodos , Animais , Osso e Ossos/metabolismo , Humanos , Camundongos , Osteoblastos/metabolismo , Processamento de Proteína Pós-Traducional
9.
mBio ; 6(5): e01309-15, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26350970

RESUMO

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication and contributes to immune evasion in vivo, but the underlying molecular mechanisms remain incompletely defined. Nef interferes with host cell actin dynamics to restrict T lymphocyte responses to chemokine stimulation and T cell receptor engagement. This relies on the assembly of a labile multiprotein complex including the host kinase PAK2 that Nef usurps to phosphorylate and inactivate the actin-severing factor cofilin. Components of the exocyst complex (EXOC), an octameric protein complex involved in vesicular transport and actin remodeling, were recently reported to interact with Nef via the same molecular surface that mediates PAK2 association. Exploring the functional relevance of EXOC in Nef-PAK2 complex assembly/function, we found Nef-EXOC interactions to be specifically mediated by the PAK2 interface of Nef, to occur in infected human T lymphocytes, and to be conserved among lentiviral Nef proteins. In turn, EXOC was dispensable for direct downstream effector functions of Nef-associated PAK2. Surprisingly, PAK2 was essential for Nef-EXOC association, which required a functional Rac1/Cdc42 binding site but not the catalytic activity of PAK2. EXOC was dispensable for Nef functions in vesicular transport but critical for inhibition of actin remodeling and proximal signaling upon T cell receptor engagement. Thus, Nef exploits PAK2 in a stepwise mechanism in which its kinase activity cooperates with an adaptor function for EXOC to inhibit host cell actin dynamics. IMPORTANCE: Human immunodeficiency virus type 1 (HIV-1) Nef contributes to AIDS pathogenesis, but the underlying molecular mechanisms remain incompletely understood. An important aspect of Nef function is to facilitate virus replication by disrupting T lymphocyte actin dynamics in response to stimulation via its association with the host cell kinase PAK2. We report here that the molecular surface of Nef for PAK2 association also mediates interaction of Nef with EXOC and establish that PAK2 provides an essential adaptor function for the subsequent formation of Nef-EXOC complexes. PAK2 and EXOC specifically cooperate in the inhibition of actin dynamics and proximal signaling induced by T cell receptor engagement by Nef. These results establish EXOC as a functionally relevant Nef interaction partner, emphasize the suitability of the PAK2 interaction surface for future therapeutic interference with Nef function, and show that such strategies need to target activity-independent PAK2 functions.


Assuntos
HIV-1/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Quinases Ativadas por p21/metabolismo , Actinas/metabolismo , Humanos , Evasão da Resposta Imune , Ligação Proteica
10.
PLoS One ; 10(6): e0130485, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26125944

RESUMO

While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacúolos/metabolismo
11.
PLoS One ; 9(11): e109372, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25380047

RESUMO

Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Corpos Multivesiculares/metabolismo , Septinas/metabolismo , Actinas/metabolismo , Transporte Biológico , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Movimento , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
12.
J Cell Sci ; 127(Pt 23): 5079-92, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25278553

RESUMO

The delivery of newly synthesized soluble lysosomal hydrolases to the endosomal system is essential for lysosome function and cell homeostasis. This process relies on the proper trafficking of the mannose 6-phosphate receptors (MPRs) between the trans-Golgi network (TGN), endosomes and the plasma membrane. Many transmembrane proteins regulating diverse biological processes ranging from virus production to the development of multicellular organisms also use these pathways. To explore how cell signaling modulates MPR trafficking, we used high-throughput RNA interference (RNAi) to target the human kinome and phosphatome. Using high-content image analysis, we identified 127 kinases and phosphatases belonging to different signaling networks that regulate MPR trafficking and/or the dynamic states of the subcellular compartments encountered by the MPRs. Our analysis maps the MPR trafficking pathways based on enzymes regulating phosphatidylinositol phosphate metabolism. Furthermore, it reveals how cell signaling controls the biogenesis of post-Golgi tubular carriers destined to enter the endosomal system through a SRC-dependent pathway regulating ARF1 and RAC1 signaling and myosin II activity.


Assuntos
Membrana Celular/enzimologia , Endossomos/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interferência de RNA , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/enzimologia , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Análise por Conglomerados , Regulação Enzimológica da Expressão Gênica , Redes Reguladoras de Genes , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Mapas de Interação de Proteínas , Transporte Proteico/genética , Receptor IGF Tipo 2/genética , Transdução de Sinais , Transfecção , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
13.
PLoS One ; 9(8): e103956, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25117470

RESUMO

The Saccharomyces cerevisiae kinase Sat4p has been originally identified as a protein involved in salt tolerance and stabilization of plasma membrane transporters, implicating a cytoplasmic localization. Our study revealed an additional mitochondrial (mt) localization, suggesting a dual function for Sat4p. While no mt related phenotype was observed in the absence of Sat4p, its overexpression resulted in significant changes of a specific mitochondrial subproteome. As shown by a comparative two dimensional difference gel electrophoresis (2D-DIGE) approach combined with mass spectrometry, particularly two groups of proteins were affected: the iron-sulfur containing aconitase-type proteins (Aco1p, Lys4p) and the lipoamide-containing subproteome (Lat1p, Kgd2p and Gcv3p). The lipoylation sites of all three proteins could be assigned by nanoLC-MS/MS to Lys75 (Lat1p), Lys114 (Kgd2p) and Lys102 (Gcv3p), respectively. Sat4p overexpression resulted in accumulation of the delipoylated protein variants and in reduced levels of aconitase-type proteins, accompanied by a decrease in the activities of the respective enzyme complexes. We propose a regulatory role of Sat4p in the late steps of the maturation of a specific subset of mitochondrial iron-sulfur cluster proteins, including Aco1p and lipoate synthase Lip5p. Impairment of the latter enzyme may account for the observed lipoylation defects.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteoma , Proteômica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
J Biol Chem ; 289(26): 18347-59, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821726

RESUMO

The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation.


Assuntos
Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membranas Intracelulares/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Animais , Osso e Ossos/metabolismo , Adesão Celular , Linhagem Celular , Polaridade Celular , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Ligação Proteica , Proteína cdc42 de Ligação ao GTP/metabolismo
15.
Mol Cell Proteomics ; 13(3): 860-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24434903

RESUMO

The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of dual-role hexokinases even in organisms that are less specialized than S. cerevisiae in terms of glucose utilization.


Assuntos
Proteínas Fúngicas/metabolismo , Glucose/farmacologia , Hexoquinase/deficiência , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/enzimologia , Proteoma/metabolismo , Proteômica , Carbono/farmacologia , Eletroforese em Gel Bidimensional , Ontologia Genética , Hexoquinase/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Redes e Vias Metabólicas/efeitos dos fármacos , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo
16.
Methods Enzymol ; 534: 223-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24359957

RESUMO

Transport carriers regulate the bidirectional flow of membrane between the compartments of the secretory and endocytic pathways. Their biogenesis relies on the recruitment of a number of cytosolic proteins and protein complexes on specific membrane microdomains with defined protein and lipid compositions. The timely assembly of these cellular machines onto membranes involves multiple protein-protein and protein-lipid interactions and is necessary to select membrane proteins and lipids into nascent carriers, to bend the flat membrane of the donor compartment, to change the shape of this nascent carrier into a tubular-vesicular structure, and to operate its scission from the donor compartment. A challenge in this field of membrane cell biology has been to identify these machineries and to understand their precise function, in particular by studying their spatial and temporal dynamics during carrier biogenesis. During the past years, liposome-based synthetic biology fully recapitulating the fidelity of carrier biogenesis as seen in vivo has proved to be instrumental to identify these key cytosolic components using mass spectrometry and their dynamics using fluorescence microscopy. We describe here the methods to isolate on synthetic membranes the protein networks needed for carrier biogenesis, to identify them using label-free quantitative proteomics, and to visualize their dynamics on giant unilamellar vesicles.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Complexo de Golgi/metabolismo , Lipossomos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Química Encefálica , Membrana Celular/química , Clatrina/genética , Clatrina/metabolismo , Citosol/química , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Complexo de Golgi/química , Lipossomos/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/metabolismo , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Peptídeos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
17.
Nat Methods ; 10(8): 788-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793238

RESUMO

A major obstacle in defining the exact role of extracellular matrix (ECM) in stem cell niches is the lack of suitable in vitro methods that recapitulate complex ECM microenvironments. Here we describe a methodology that permits reliable anchorage of native cell-secreted ECM to culture carriers. We validated our approach by fabricating two types of human bone marrow-specific ECM substrates that were robust enough to support human mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells in vitro. We characterized the molecular composition, structural features and nanomechanical properties of the MSC-derived ECM preparations and demonstrated their ability to support expansion and differentiation of bone marrow stem cells. Our methodology enables the deciphering and modulation of native-like multicomponent ECMs of tissue-resident stem cells and will therefore prepare the ground for a more rational design of engineered stem cell niches.


Assuntos
Células da Medula Óssea/fisiologia , Matriz Extracelular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Organismos Livres de Patógenos Específicos
18.
PLoS One ; 7(5): e37592, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22624050

RESUMO

BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK), a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent ß-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.


Assuntos
Remodelação Óssea/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Integrases/metabolismo , Modelos Animais , Osteoclastos/enzimologia , Tamoxifeno/farmacologia , Animais , Primers do DNA/genética , Deleção de Genes , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Distribuição Tecidual
19.
J Biol Chem ; 287(21): 17447-17458, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22461620

RESUMO

Numerous transport processes occur between the two mitochondrial (mt) membranes due to the diverse functions and metabolic processes of the mt organelle. The metabolite and ion transport through the mt outer membrane (OM) is widely assumed to be mediated by the porin pore, whereas in the mt inner membrane (IM) specific carriers are responsible for transport processes. Here, we provide evidence by means of Blue Native (BN)-PAGE analysis, co-immunoprecipitation, and tandem affinity purification that the two mt OM proteins Om14p and Om45p associate with the porin pore. Porin molecules seem to assemble independently to build the core unit. A subpopulation of these core units interacts with Om14p and Om45p. With preparative tandem affinity purification followed by MS analysis, we could identify interaction partners of this OM complex, which are mainly localized within the mt IM and function as carriers for diverse molecules. We propose a model for the role of the two OM proteins in addressing the porin pore to bind to specific channels in the mt IM to facilitate transport of metabolites.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico/fisiologia , Proteínas Mitocondriais/genética , Porinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Nat Cell Biol ; 14(1): 11-9, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22193159

RESUMO

Transport carriers regulate membrane flow between compartments of the secretory and endocytic pathways in eukaryotic cells. Carrier biogenesis is assisted by microtubules, actin filaments and their associated motors that link to membrane-associated coats, adaptors and accessory proteins. We summarize here how the biochemical properties of membranes inform their interactions with cytoskeletal regulators. We also discuss how the forces generated by the cytoskeleton and motor proteins alter the biophysical properties and the shape of membranes. The interplay between the cytoskeleton and membrane proteins ensures tight spatial and temporal control of carrier biogenesis, which is essential for cellular homeostasis.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Via Secretória/fisiologia , Transporte Biológico , Células Eucarióticas/metabolismo , Células Eucarióticas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA