Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 202: 117443, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333298

RESUMO

Low molecular weight (LMW) dissolved organic matter (DOM) is the predominant competitor for adsorption sites against organic micropollutants (OMPs) in activated carbon adsorption. However, top-down approaches using highly complex mixtures of real water DOM do not allow to concisely examine the impacts of specific LMW DOM molecular properties on competitive adsorption. Therefore, we followed a bottom-up approach using fifteen model compounds (mDOM) to elucidate how important DOM characteristics, including hydrophobicity and unsaturated structures (ring, double/triple bond), impact competitiveness. Large concentration asymmetry (~500 µg DOC/µg OMP) made mDOM compounds, which were overall less preferentially adsorbed than OMPs, become competitive against OMPs and inhibit OMP adsorption kinetics by pre-occupation of adsorption sites. Our results revealed that both hydrophobicity interactions and π-interactions increased mDOM competitiveness, while π-interactions outweighed hydrophobic interactions. However, π-interactions could not be satisfactorily evaluated with a parameter such as specific ultraviolet absorbance (SUVA) due to interferences of carboxyl groups in aromatic mDOMs. Instead, mDOM adsorbability, described by mDOM adsorption capacity, proved to be a comprehensive indicator for mDOM competitiveness. To our knowledge, this is the first study that systematically clarifies the impacts of intricately interacting molecular properties on DOM adsorption and the related competition against OMP adsorption. DOM adsorbability may inspire a new fractionation, and assist the further isolation, identification and detailed characterization of LMW DOM competitors in real DOM-containing waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cinética , Peso Molecular , Poluentes Químicos da Água/análise
2.
Water Res ; 173: 115574, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062223

RESUMO

Though the ozone-activated carbon process has been widely applied for drinking water purification, little is known about how ozone-modified natural organic matter (NOM) competes with micropollutants in activated carbon adsorption. In this study, three natural waters and one synthetic water (standard humics solution) with highly heterogeneous NOM compositions were employed to investigate the interference of ozonated NOM with the adsorption of 2-methylisoborneol (MIB). Analysis using liquid chromatography with online carbon and UV254 detection (LC-OCD-UVD) revealed that ozonation led to various disintegration patterns of macromolecules in NOM, and UV absorbance was reduced markedly for nearly all NOM fractions. Powdered activated carbon (PAC) adsorption experiments showed that increasing ozone consumption coincided with reducing NOM competition against MIB in the three natural waters, as expressed by the fitted initial concentrations of the equivalent background compound (c0,EBC). In the synthetic water, in contrast, competition increased under low/moderate specific ozone consumptions and then decreased with further elevation of ozone consumptions. Regarding the significance on affecting ozonated NOM interference, aromaticity reduction outweighed formation of low molecular weight (LMW) organics in most cases, enhancing MIB adsorption capacity. However, disintegration of the humics fraction with larger molecular weight (1,103 g/mol, as compared to 546-697 g/mol in three natural waters) into smaller, more competitive fractions caused the observed initial deteriorated MIB adsorption in synthetic water. A superior correlation between c0,EBC and the UV absorbance of LMW organics (R2 = 0.93) over concentrations of LMW organics underlined the importance of the aromatic properties in competitive adsorption projection for ozone pretreated natural waters. Furthermore, the change of relative concentration of UV absorbing compounds during ozonation could help estimate the decrease of c0,EBC, which could be a promising tool for waterworks to adjust PAC doses for MIB removal in ozonated waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Canfanos , Carvão Vegetal
3.
Water Res ; 161: 274-287, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202114

RESUMO

With the growth in production and use of chemicals and the fact that many end up in the aquatic environment, there is an increasing need for advanced water treatment technologies that can remove chemicals of emerging concern (CECs) from water. The current lack of a homogenous approach for testing advanced water treatment technologies hampers the interpretation and evaluation of CEC removal efficiency data, and hinders informed decision making by stakeholders with regard to which treatment technology could satisfy their specific needs. Here a data evaluation framework is proposed to improve the use of current knowledge in the field of advanced water treatment technologies for drinking water and wastewater, consisting of a set of 9 relevance criteria and 51 reliability criteria. The two criteria sets underpin a thorough, unbiased and standardised method to select studies to evaluate and compare CEC removal efficiency of advanced water treatment technologies in a scientifically sound way. The relevance criteria set was applied to 244 papers on removal efficiency, of which only 20% fulfilled the criteria. The reliability criteria were applied to the remaining papers. In general these criteria were fulfilled with regards to information on the target compound, the water matrix and the treatment process conditions. However, there was a lack of information on data interpretation and statistics. In conclusion, a minority of the evaluated papers are suited for comparison across techniques, compounds and water matrixes. There is a clear need for more uniform reporting of water treatment studies for CEC removal. In the future this will benefit the selection of appropriate technologies.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Reprodutibilidade dos Testes , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA