Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(4): 1255-1266, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30851141

RESUMO

This study coupled a landscape-scale metagenomic survey of denitrification gene abundance in soils with in situ denitrification measurements to show how environmental factors shape distinct denitrification communities that exhibit varying denitrification activity. Across a hydrologic gradient, the distribution of total denitrification genes (nap/nar + nirK/nirS + cNor/qNor + nosZ) inferred from metagenomic read abundance exhibited no consistent patterns. However, when genes were considered independently, nirS, cNor and nosZ read abundance was positively associated with areas of higher soil moisture, higher nitrate and higher annual denitrification rates, whereas nirK and qNor read abundance was negatively associated with these factors. These results suggest that environmental conditions, in particular soil moisture and nitrate, select for distinct denitrification communities that are characterized by differential abundance of genes encoding apparently functionally redundant proteins. In contrast, taxonomic analysis did not identify notable variability in denitrifying community composition across sites. While the capacity to denitrify was ubiquitous across sites, denitrification genes with higher energetic costs, such as nirS and cNor, appear to confer a selective advantage in microbial communities experiencing more frequent soil saturation and greater nitrate inputs. This study suggests metagenomics can help identify denitrification hotspots that could be protected or enhanced to treat non-point source nitrogen pollution.


Assuntos
Desnitrificação/genética , Genes Bacterianos/genética , Metagenoma , Microbiota/genética , Microbiologia do Solo , Bactérias/genética , Nitratos/metabolismo , Solo/química
2.
Proc Natl Acad Sci U S A ; 115(11): 2776-2781, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483245

RESUMO

Soils are Earth's largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km2 in the United States, will sequester a cumulative 1.3-2.1 Pg C within a century (13-21 Tg C·y-1). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.


Assuntos
Carbono/análise , Solo/química , Carbono/metabolismo , Monitoramento Ambiental , Florestas , Efeito Estufa , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA