RESUMO
Tau protein is an intrinsically disordered protein that plays a key role in Alzheimer's disease (AD). In brains of AD patients, Tau occurs abnormally phosphorylated and aggregated in neurofibrillary tangles (NFTs). Together with Tau, 14-3-3 proteins - abundant cytosolic dimeric proteins - were found colocalized in the NFTs. However, so far, the molecular mechanism of the process leading to pathological changes in Tau structure as well as the direct involvement of 14-3-3 proteins are not well understood. Here, we aimed to reveal the effects of phosphorylation by protein kinase A (PKA) on Tau structural preferences and provide better insight into the interaction between Tau and 14-3-3 proteins. We also addressed the impact of monomerization-inducing phosphorylation of 14-3-3 at S58 on the binding to Tau protein. Using multidimensional nuclear magnetic resonance spectroscopy (NMR), chemical cross-linking analyzed by mass spectrometry (MS) and PAGE, we unveiled differences in their binding affinity, stoichiometry, and interfaces with single-residue resolution. We revealed that the interaction between 14-3-3 and Tau proteins is mediated not only via the 14-3-3 amphipathic binding grooves, but also via less specific interactions with 14-3-3 protein surface and, in the case of monomeric 14-3-3, also partially via the exposed dimeric interface. In addition, the hyperphosphorylation of Tau changes its affinity to 14-3-3 proteins. In conclusion, we propose quite complex interaction mode between the Tau and 14-3-3 proteins.
Assuntos
Proteínas 14-3-3 , Ligação Proteica , Proteínas tau , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Proteínas tau/metabolismo , Proteínas tau/química , Humanos , Fosforilação , Multimerização Proteica , Doença de Alzheimer/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos MolecularesRESUMO
The nine-amino-acid activation domain (9aaTAD) is defined by a short amino acid pattern including two hydrophobic regions (positions p3-4 and p6-7). The KIX domain of mediator transcription CBP interacts with the 9aaTAD domains of transcription factors MLL, E2A, NF-kB, and p53. In this study, we analyzed the 9aaTADs-KIX interactions by nuclear magnetic resonance. The positions of three KIX helixes α1-α2-α3 are influenced by sterically-associated hydrophobic I611, L628, and I660 residues that are exposed to solvent. The positions of two rigid KIX helixes α1 and α2 generate conditions for structural folding in the flexible KIX-L12-G2 regions localized between them. The three KIX I611, L628, and I660 residues interact with two 9aaTAD hydrophobic residues in positions p3 and p4 and together build a hydrophobic core of five residues (5R). Numerous residues in 9aaTAD position p3 and p4 could provide this interaction. Following binding of the 9aaTAD to KIX, the hydrophobic I611, L628, and I660 residues are no longer exposed to solvent and their position changes inside the hydrophobic core together with position of KIX α1-α2-α3 helixes. The new positions of the KIX helixes α1 and α2 allow the KIX-L12-G2 enhanced formation. The second hydrophobic region of the 9aaTAD (positions p6 and p7) provides strong binding with the KIX-L12-G2 region. Similarly, multiple residues in 9aaTAD position p6 and p7 could provide this interaction. In conclusion, both 9aaTAD regions p3, p4 and p6, p7 provide co-operative and highly universal binding to mediator KIX. The hydrophobic core 5R formation allows new positions of the rigid KIX α-helixes and enables the enhanced formation of the KIX-L12-G2 region. This contributes to free energy and is the key for the KIX-9aaTAD binding. Therefore, the 9aaTAD-KIX interactions do not operate under the rigid key-and-lock mechanism what explains the 9aaTAD natural variability.