Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Vaccine ; 42(26): 126307, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39276622

RESUMO

The World Health Organization's Immunization and Vaccines-related Implementation Research Advisory Committee (IVIR-AC) serves to independently review and evaluate vaccine-related research to maximize the potential impact of vaccination programs. From 28 June - 1 July 2024, IVIR-AC was convened for an ad hoc meeting to discuss new evidence on criteria for rubella vaccine introduction and the risk of congenital rubella syndrome. This report summarizes background information on rubella virus transmission and the burden of congenital rubella syndrome, meeting structure and presentations, proceedings, and recommendations.

4.
Vaccine ; 42(15): 3379-3383, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38704250

RESUMO

The Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) is the World Health Organization's key standing advisory body to conduct an independent review of research, particularly of transmission and economic modeling analyses that estimate the impact and value of vaccines. From 26th February-1st March 2024, at its first of two semi-annual meetings, IVIR-AC provided feedback and recommendations across four sessions; this report summarizes the proceedings and recommendations from that meeting. Session topics included modeling of the impact and cost-effectiveness of the R21/Matrix-M malaria vaccine, meta-analysis of economic evaluations of vaccines, a global analysis estimating the impact of vaccination over the last 50 years, and modeling the impact of different RTS,S malaria vaccine dose schedules in seasonal settings.


Assuntos
Comitês Consultivos , Vacinas Antimaláricas , Organização Mundial da Saúde , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Análise Custo-Benefício , Vacinação/métodos , Malária/prevenção & controle , Imunização/métodos
5.
BMC Infect Dis ; 24(1): 510, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773455

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infections in children worldwide. The highest incidence of severe disease is in the first 6 months of life, with infants born preterm at greatest risk for severe RSV infections. The licensure of new RSV therapeutics (a long-acting monoclonal antibody and a maternal vaccine) in Europe, USA, UK and most recently in Australia, has driven the need for strategic decision making on the implementation of RSV immunisation programs. Data driven approaches, considering the local RSV epidemiology, are critical to advise on the optimal use of these therapeutics for effective RSV control. METHODS: We developed a dynamic compartmental model of RSV transmission fitted to individually-linked population-based laboratory, perinatal and hospitalisation data for 2000-2012 from metropolitan Western Australia (WA), stratified by age and prior exposure. We account for the differential risk of RSV-hospitalisation in full-term and preterm infants (defined as < 37 weeks gestation). We formulated a function relating age, RSV exposure history, and preterm status to the risk of RSV-hospitalisation given infection. RESULTS: The age-to-risk function shows that risk of hospitalisation, given RSV infection, declines quickly in the first 12 months of life for all infants and is 2.6 times higher in preterm compared with term infants. The hospitalisation risk, given infection, declines to < 10% of the risk at birth by age 7 months for term infants and by 9 months for preterm infants. CONCLUSIONS: The dynamic model, using the age-to-risk function, characterises RSV epidemiology for metropolitan WA and can now be extended to predict the impact of prevention measures. The stratification of the model by preterm status will enable the comparative assessment of potential strategies in the extended model that target this RSV risk group relative to all-population approaches. Furthermore, the age-to-risk function developed in this work has wider relevance to the epidemiological characterisation of RSV.


Assuntos
Hospitalização , Recém-Nascido Prematuro , Infecções por Vírus Respiratório Sincicial , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Hospitalização/estatística & dados numéricos , Lactente , Recém-Nascido , Austrália Ocidental/epidemiologia , Feminino , Vírus Sincicial Respiratório Humano , Fatores Etários , Masculino , Medição de Risco , Fatores de Risco
6.
BMC Infect Dis ; 24(1): 407, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627637

RESUMO

BACKGROUND: Since the emergence of SARS-CoV-2 (COVID-19), there have been multiple waves of infection and multiple rounds of vaccination rollouts. Both prior infection and vaccination can prevent future infection and reduce severity of outcomes, combining to form hybrid immunity against COVID-19 at the individual and population level. Here, we explore how different combinations of hybrid immunity affect the size and severity of near-future Omicron waves. METHODS: To investigate the role of hybrid immunity, we use an agent-based model of COVID-19 transmission with waning immunity to simulate outbreaks in populations with varied past attack rates and past vaccine coverages, basing the demographics and past histories on the World Health Organization Western Pacific Region. RESULTS: We find that if the past infection immunity is high but vaccination levels are low, then the secondary outbreak with the same variant can occur within a few months after the first outbreak; meanwhile, high vaccination levels can suppress near-term outbreaks and delay the second wave. Additionally, hybrid immunity has limited impact on future COVID-19 waves with immune-escape variants. CONCLUSIONS: Enhanced understanding of the interplay between infection and vaccine exposure can aid anticipation of future epidemic activity due to current and emergent variants, including the likely impact of responsive vaccine interventions.


Assuntos
COVID-19 , Epidemias , Vacinas , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Vacinação , Imunidade Adaptativa
7.
Science ; 383(6682): 562, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301023
8.
Vaccine ; 42(7): 1424-1434, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326131

RESUMO

Evaluating vaccine-related research is critical to maximize the potential of vaccination programmes. The WHO Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) provides an independent review of research that estimates the performance, impact and value of vaccines, with a particular focus on transmission and economic modelling. On 11-13 September 2023, IVIR-AC was convened for a bi-annual meeting where the committee reviewed research and presentations across eight different sessions. This report summarizes the background information, proceedings and recommendations from that meeting. Sessions ranged in topic from timing of measles supplementary immunization activities, analyses of conditions necessary to meet measles elimination in the South-East Asia region, translating modelled evidence into policy, a risk-benefit analysis of dengue vaccine, COVID-19 scenario modelling in the African region, therapeutic vaccination against human papilloma virus, the Vaccine Impact Modelling Consortium, and the Immunization Agenda 2030 vaccine impact estimates.


Assuntos
Sarampo , Vacinas , Humanos , Comitês Consultivos , Organização Mundial da Saúde , Vacinas/uso terapêutico , Vacinação , Imunização
9.
Cancer Discov ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241033

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

11.
Cancer Discov ; : OF1-OF22, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270272

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth. SIGNIFICANCE: Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell-based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.

12.
Influenza Other Respir Viruses ; 17(12): e13229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38090227

RESUMO

Background: The South African government employed various nonpharmaceutical interventions (NPIs) to reduce the spread of SARS-CoV-2. Surveillance data from South Africa indicates reduced circulation of respiratory syncytial virus (RSV) throughout the 2020-2021 seasons. Here, we use a mechanistic transmission model to project the rebound of RSV in the two subsequent seasons. Methods: We fit an age-structured epidemiological model to hospitalization data from national RSV surveillance in South Africa, allowing for time-varying reduction in RSV transmission during periods of COVID-19 circulation. We apply the model to project the rebound of RSV in the 2022 and 2023 seasons. Results: We projected an early and intense outbreak of RSV in April 2022, with an age shift to older infants (6-23 months old) experiencing a larger portion of severe disease burden than typical. In March 2022, government alerts were issued to prepare the hospital system for this potentially intense outbreak. We then assess the 2022 predictions and project the 2023 season. Model predictions for 2023 indicate that RSV activity has not fully returned to normal, with a projected early and moderately intense wave. We estimate that NPIs reduced RSV transmission between 15% and 50% during periods of COVID-19 circulation. Conclusions: A wide range of NPIs impacted the dynamics of the RSV outbreaks throughout 2020-2023 in regard to timing, magnitude, and age structure, with important implications in a low- and middle-income countries (LMICs) setting where RSV interventions remain limited. More efforts should focus on adapting RSV models to LMIC data to project the impact of upcoming medical interventions for this disease.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Humanos , Pré-Escolar , África do Sul/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Estações do Ano
13.
PLoS Med ; 20(11): e1004195, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38016000

RESUMO

BACKGROUND: Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. METHODS AND FINDINGS: We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. CONCLUSIONS: Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação
14.
Nat Commun ; 14(1): 4325, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468463

RESUMO

With the ongoing evolution of the SARS-CoV-2 virus updated vaccines may be needed. We fitted a model linking immunity levels and protection to vaccine effectiveness data from England for three vaccines (Oxford/AstraZeneca AZD1222, Pfizer-BioNTech BNT162b2, Moderna mRNA-1273) and two variants (Delta, Omicron). Our model reproduces the observed sustained protection against hospitalisation and death from the Omicron variant over the first six months following dose 3 with the ancestral vaccines but projects a gradual waning to moderate protection after 1 year. Switching the fourth dose to a variant-matched vaccine against Omicron BA.1/2 is projected to prevent nearly twice as many hospitalisations and deaths over a 1-year period compared to administering the ancestral vaccine. This result is sensitive to the degree to which immunogenicity data can be used to predict vaccine effectiveness and uncertainty regarding the impact that infection-induced immunity (not captured here) may play in modifying future vaccine effectiveness.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Vacina BNT162 , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Eficácia de Vacinas , Vacinas contra COVID-19
15.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131637

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases T cell effector functions. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how such cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

16.
Lancet Public Health ; 8(3): e174-e183, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774945

RESUMO

BACKGROUND: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3 weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the SARS-CoV-2 alpha variant prompted the UK to extend the interval between doses to 12 weeks. In this study, we aimed to quantify the effect of delaying the second vaccine dose in England. METHODS: We used a previously described model of SARS-CoV-2 transmission, calibrated to COVID-19 surveillance data from England, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data, using a Bayesian evidence-synthesis framework. We modelled and compared the epidemic trajectory in the counterfactual scenario in which vaccine doses were administered 3 weeks apart against the real reported vaccine roll-out schedule of 12 weeks. We estimated and compared the resulting numbers of daily infections, hospital admissions, and deaths. In sensitivity analyses, we investigated scenarios spanning a range of vaccine effectiveness and waning assumptions. FINDINGS: In the period from Dec 8, 2020, to Sept 13, 2021, the number of individuals who received a first vaccine dose was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the interval between the first and second COVID-19 vaccine doses from 3 to 12 weeks averted a median (calculated as the median of the posterior sample) of 58 000 COVID-19 hospital admissions (291 000 cumulative hospitalisations [95% credible interval 275 000-319 000] under the 3-week strategy vs 233 000 [229 000-238 000] under the 12-week strategy) and 10 100 deaths (64 800 deaths [60 200-68 900] vs 54 700 [52 800-55 600]). Similarly, we estimated that the 3-week strategy would have resulted in more infections compared with the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. In results by age group, the 12-week strategy led to more hospitalisations and deaths in older people in spring 2021, but fewer following the emergence of the delta variant during summer 2021. INTERPRETATION: England's delayed-second-dose vaccination strategy was informed by early real-world data on vaccine effectiveness in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single-dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths overall. FUNDING: UK National Institute for Health Research; UK Medical Research Council; Community Jameel; Wellcome Trust; UK Foreign, Commonwealth and Development Office; Australian National Health and Medical Research Council; and EU.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Idoso , Lactente , Teorema de Bayes , Estudos Soroepidemiológicos , Austrália , SARS-CoV-2 , Inglaterra
17.
Lancet Glob Health ; 10(12): e1782-e1792, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400084

RESUMO

BACKGROUND: A 2021 clinical trial of seasonal RTS,S/AS01E (RTS,S) vaccination showed that vaccination was non-inferior to seasonal malaria chemoprevention (SMC) in preventing clinical malaria. The combination of these two interventions provided significant additional protection against clinical and severe malaria outcomes. Projections of the effect of this novel approach to RTS,S vaccination in seasonal transmission settings for extended timeframes and across a range of epidemiological settings are needed to inform policy recommendations. METHODS: We used a mathematical, individual-based model of malaria transmission that was fitted to data on the relationship between entomological inoculation rate and parasite prevalence, clinical disease, severe disease, and deaths from multiple sites across Africa. The model was validated with results from a phase 3b trial assessing the effect of SV-RTS,S in Mali and Burkina Faso. We developed three intervention efficacy models with varying degrees and durations of protection for our population-level modelling analysis to assess the potential effect of an RTS,S vaccination schedule based on age (doses were delivered to children aged 6 months, 7·5 months, and 9 months for the first three doses, and at 27 months of age for the fourth dose) or season (children aged 5-17 months at the time of first vaccination received the first three doses in the 3 months preceding the transmission season, with any subsequent doses up to five doses delivered annually) in seasonal transmission settings both in the absence and presence of SMC with sulfadoxine-pyrimethamine plus amodiaquine. This is modelled as a full therapeutic course delivered every month for four or five months of the peak in transmission season. Estimates of cases and deaths averted in a population of 100 000 children aged 0-5 years were calculated over a 15-year time period for a range of levels of malaria transmission intensity (Plasmodium falciparum parasite prevalence in children aged 2-10 years between 10% and 65%) and over two west Africa seasonality archetypes. FINDINGS: Seasonally targeting RTS,S resulted in greater absolute reductions in malaria cases and deaths compared with an age-based strategy, averting an additional 14 000-47 000 cases per 100 000 children aged 5 years and younger over 15 years, dependent on seasonality and transmission intensity. We predicted that adding seasonally targeted RTS,S to SMC would reduce clinical incidence by up to an additional 42 000-67 000 cases per 100 000 children aged 5 years and younger over 15 years compared with SMC alone. Transmission season duration was a key determinant of intervention effect, with the advantage of adding RTS,S to SMC predicted to be smaller with shorter transmission seasons. INTERPRETATION: RTS,S vaccination in seasonal settings could be a valuable additional tool to existing interventions, with seasonal delivery maximising the effect relative to an age-based approach. Decisions surrounding deployment strategies of RTS,S in such settings will need to consider the local and regional variations in seasonality, current rates of other interventions, and potential achievable RTS,S coverage. FUNDING: UK Medical Research Council, UK Foreign Commonwealth & Development Office, The Wellcome Trust, and The Royal society.


Assuntos
Vacinas Antimaláricas , Malária , Criança , Humanos , Vacinas Antimaláricas/uso terapêutico , Estações do Ano , Malária/epidemiologia , Malária/prevenção & controle , Plasmodium falciparum , Burkina Faso/epidemiologia
18.
Lancet Infect Dis ; 22(9): 1293-1302, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753318

RESUMO

BACKGROUND: The first COVID-19 vaccine outside a clinical trial setting was administered on Dec 8, 2020. To ensure global vaccine equity, vaccine targets were set by the COVID-19 Vaccines Global Access (COVAX) Facility and WHO. However, due to vaccine shortfalls, these targets were not achieved by the end of 2021. We aimed to quantify the global impact of the first year of COVID-19 vaccination programmes. METHODS: A mathematical model of COVID-19 transmission and vaccination was separately fit to reported COVID-19 mortality and all-cause excess mortality in 185 countries and territories. The impact of COVID-19 vaccination programmes was determined by estimating the additional lives lost if no vaccines had been distributed. We also estimated the additional deaths that would have been averted had the vaccination coverage targets of 20% set by COVAX and 40% set by WHO been achieved by the end of 2021. FINDINGS: Based on official reported COVID-19 deaths, we estimated that vaccinations prevented 14·4 million (95% credible interval [Crl] 13·7-15·9) deaths from COVID-19 in 185 countries and territories between Dec 8, 2020, and Dec 8, 2021. This estimate rose to 19·8 million (95% Crl 19·1-20·4) deaths from COVID-19 averted when we used excess deaths as an estimate of the true extent of the pandemic, representing a global reduction of 63% in total deaths (19·8 million of 31·4 million) during the first year of COVID-19 vaccination. In COVAX Advance Market Commitment countries, we estimated that 41% of excess mortality (7·4 million [95% Crl 6·8-7·7] of 17·9 million deaths) was averted. In low-income countries, we estimated that an additional 45% (95% CrI 42-49) of deaths could have been averted had the 20% vaccination coverage target set by COVAX been met by each country, and that an additional 111% (105-118) of deaths could have been averted had the 40% target set by WHO been met by each country by the end of 2021. INTERPRETATION: COVID-19 vaccination has substantially altered the course of the pandemic, saving tens of millions of lives globally. However, inadequate access to vaccines in low-income countries has limited the impact in these settings, reinforcing the need for global vaccine equity and coverage. FUNDING: Schmidt Science Fellowship in partnership with the Rhodes Trust; WHO; UK Medical Research Council; Gavi, the Vaccine Alliance; Bill & Melinda Gates Foundation; National Institute for Health Research; and Community Jameel.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , Saúde Global , Humanos , Modelos Teóricos , Vacinação
19.
Commun Med (Lond) ; 2: 14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603311

RESUMO

Background: Vaccine hesitancy - a delay in acceptance or refusal of vaccines despite availability - has the potential to threaten the successful roll-out of SARS-CoV-2 vaccines globally. In this study, we aim to understand the likely impact of vaccine hesitancy on the control of the COVID-19 pandemic. Methods: We modelled the potential impact of vaccine hesitancy on the control of the pandemic and the relaxation of non-pharmaceutical interventions (NPIs) by combining an epidemiological model of SARS-CoV-2 transmission with data on vaccine hesitancy from population surveys. Results: Our simulations suggest that the mortality over a 2-year period could be up to 7.6 times higher in countries with high vaccine hesitancy compared to an ideal vaccination uptake if NPIs are relaxed. Alternatively, high vaccine hesitancy could prolong the need for NPIs to remain in place. Conclusions: While vaccination is an individual choice, vaccine-hesitant individuals have a substantial impact on the pandemic trajectory, which may challenge current efforts to control COVID-19. In order to prevent such outcomes, addressing vaccine hesitancy with behavioural interventions is an important priority in the control of the COVID-19 pandemic.

20.
medRxiv ; 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35313577

RESUMO

In response to the COVID-19 pandemic, the South African government employed various nonpharmaceutical interventions (NPIs) in order to reduce the spread of SARS-CoV-2. In addition to mitigating transmission of SARS-CoV-2, these public health measures have also functioned in slowing the spread of other endemic respiratory pathogens. Surveillance data from South Africa indicates low circulation of respiratory syncytial virus (RSV) throughout the 2020-2021 Southern Hemisphere winter seasons. Here we fit age-structured epidemiological models to national surveillance data to predict the 2022 RSV outbreak following two suppressed seasons. We project a 32% increase in the peak number of monthly hospitalizations among infants ≤ 2 years, with older infants (6-23 month olds) experiencing a larger portion of severe disease burden than typical. Our results suggest that hospital system readiness should be prepared for an intense RSV season in early 2022.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA