RESUMO
Objective: Accelerated biological aging is a plausible and modifiable determinant of dementia burden facing minoritized communities, but is not well-studied in these historically underrepresented populations. Our objective was to preliminarily characterize relationships between telomere length and cognitive health among American Indian/Alaska Native (AI/AN) and Black/African American (B/AA) middle-aged and older adults. Methods: This study included data on telomere length and cognitive test performance from 187 participants, enrolled in one of two community-based cognitive aging cohorts and who identified their primary race as AI/AN or B/AA. Results: Nested multivariable regression models revealed preliminary evidence for associations between telomere length and cognitive performance, and these associations were partially independent of chronological age. Discussion: Small sample size limited estimate precision, however, findings suggest future work on telomere length and cognitive health in underrepresented populations at high risk for dementia is feasible and valuable as a foundation for social and behavioral intervention research.
RESUMO
INTRODUCTION: Whole genome methylation sequencing (WGMS) in blood identifies differential DNA methylation in persons with late-onset dementia due to Alzheimer's disease (AD) but has not been tested in persons with mild cognitive impairment (MCI). METHODS: We used WGMS to compare DNA methylation levels at 25,244,219 CpG loci in 382 blood samples from 99 persons with MCI, 109 with AD, and 174 who are cognitively unimpaired (CU). RESULTS: WGMS identified 9,756 differentially methylated positions (DMPs) in persons with MCI, including 1,743 differentially methylated genes encoding proteins in biological pathways related to synapse organization, dendrite development, and ion transport. 447 DMPs exhibit progressively increasing or decreasing DNA methylation levels between CU, MCI, and AD that correspond to cognitive status. DISCUSSION: WGMS identifies DMPs in known and newly detected genes in blood from persons with MCI and AD that support blood DNA methylation levels as candidate biomarkers of cognitive status.
RESUMO
In mammals, the molecular mechanisms underlying transgenerational inheritance of phenotypic traits in serial generations of progeny after ancestral environmental exposures, without variation in DNA sequence, remain elusive. We've recently described transmission of a beneficial trait in rats and mice, in which F0 supplementation of methyl donors, including folic acid, generates enhanced axon regeneration after sharp spinal cord injury in untreated F1 to F3 progeny linked to differential DNA methylation levels in spinal cord tissue. To test whether the transgenerational effect of folic acid is transmitted via the germline, we performed whole-genome methylation sequencing on sperm DNA from F0 mice treated with either folic acid or vehicle control, and their F1, F2, and F3 untreated progeny. Transgenerational differentially methylated regions (DMRs) are observed in each consecutive generation and distinguish folic acid from untreated lineages, predominate outside of CpG islands and in regions of the genome that regulate gene expression, including promoters, and overlap at both the differentially methylated position (DMP) and gene levels. These findings indicate that molecular changes between generations are caused by ancestral folate supplementation. In addition, 29,719 DMPs exhibit serial increases or decreases in DNA methylation levels in successive generations of untreated offspring, correlating with a serial increase in the phenotype across generations, consistent with a 'wash-in' effect. Sibship-specific DMPs annotate to genes that participate in axon- and synapse-related pathways.
Assuntos
Axônios , Metilação de DNA , Ácido Fólico , Espermatozoides , Ácido Fólico/farmacologia , Ácido Fólico/administração & dosagem , Animais , Masculino , Camundongos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Axônios/metabolismo , Axônios/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Ilhas de CpG , Feminino , Regeneração Nervosa/efeitos dos fármacos , Epigênese Genética , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/citologiaRESUMO
BACKGROUND: The sensitivity of amyloid to pre-analytic factors complicates cerebrospinal fluid (CSF) diagnostics for Alzheimer disease. We report reliability and validity evidence for automated immunoassays from frozen and fresh CSF samples in an ongoing, single-site research program. METHODS: CSF samples were obtained from 2 Wisconsin cohorts (1256 measurements; 727 participants). Levels of amyloid beta 1-42 (Aß42), phosphorylated tau 181 (pTau181), and total tau (tTau) were obtained using an Elecsys cobas e 601 platform. Repeatability and fixed effects of storage tube type, extraction method, and freezing were assessed via mixed models. Concordance with amyloid positron emission tomography (PET) was investigated with 238 participants having a temporally proximal PET scan. RESULTS: Repeatability was high with intraclass correlation (ICC) ≥0.9, but tube type strongly affected measurements. Discriminative accuracy for PET amyloid positivity was strong across tube types (area under the curve [AUC]: Aß42, 0.87; pTau181Aß42 , 0.96), although optimal thresholds differed. CONCLUSIONS: Under real-world conditions, the Elecsys platform had high repeatability. However, strong effects of pre-analytic factors suggest caution in drawing longitudinal inferences.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Reprodutibilidade dos Testes , Proteínas tau/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidianoRESUMO
INTRODUCTION: DNA microarray-based studies report differentially methylated positions (DMPs) in blood between late-onset dementia due to Alzheimer's disease (AD) and cognitively unimpaired individuals, but interrogate < 4% of the genome. METHODS: We used whole genome methylation sequencing (WGMS) to quantify DNA methylation levels at 25,409,826 CpG loci in 281 blood samples from 108 AD and 173 cognitively unimpaired individuals. RESULTS: WGMS identified 28,038 DMPs throughout the human methylome, including 2707 differentially methylated genes (e.g., SORCS3, GABA, and PICALM) encoding proteins in biological pathways relevant to AD such as synaptic membrane, cation channel complex, and glutamatergic synapse. One hundred seventy-three differentially methylated blood-specific enhancers interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD. DISCUSSION: WGMS identifies differentially methylated CpGs in known and newly detected genes and enhancers in blood from persons with and without AD. HIGHLIGHTS: Whole genome DNA methylation levels were quantified in blood from persons with and without Alzheimer's disease (AD). Twenty-eight thousand thirty-eight differentially methylated positions (DMPs) were identified. Two thousand seven hundred seven genes comprise DMPs. Forty-eight of 75 independent genetic risk loci for AD have DMPs. One thousand five hundred sixty-eight blood-specific enhancers comprise DMPs, 173 of which interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD.
Assuntos
Doença de Alzheimer , Metilação de DNA , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Epigênese Genética , Sequenciamento Completo do GenomaAssuntos
COVID-19 , Humanos , Sequenciamento Completo do Genoma , Metilação de DNA , Epigênese Genética , HospitaisRESUMO
An accurate blood test for Alzheimer's disease that is sensitive to preclinical proteinopathy and cognitive decline has clear implications for early detection and secondary prevention. We assessed the performance of plasma phosphorylated tau 217 ( pTa u 217 ) against brain PET markers of amyloid [ [ 11 C ] -labelled Pittsburgh compound B (PiB)] and tau ( [ 18 F ] MK-6240) and its utility for predicting longitudinal cognition. Samples were analysed from a subset of participants with up to 8 years follow-up in the Wisconsin Registry for Alzheimer's Prevention (WRAP; 2001-present; plasma 2011-present), a longitudinal cohort study of adults from midlife, enriched for parental history of Alzheimer's disease. Participants were a convenience sample who volunteered for at least one PiB scan, had usable banked plasma and were cognitively unimpaired at first plasma collection. Study personnel who interacted with participants or samples were blind to amyloid status. We used mixed effects models and receiver-operator characteristic curves to assess concordance between plasma pTa u 217 and PET biomarkers of Alzheimer's disease and mixed effects models to understand the ability of plasma pTa u 217 to predict longitudinal performance on WRAP's preclinical Alzheimer's cognitive composite (PACC-3). The primary analysis included 165 people (108 women; mean age = 62.9 ± 6.06; 160 still enrolled; 2 deceased; 3 discontinued). Plasma pTa u 217 was strongly related to PET-based estimates of concurrent brain amyloid ( ß ^ = 0.83 (0.75, 0.90), P < 0.001). Concordance was high between plasma pTa u 217 and both amyloid PET (area under the curve = 0.91, specificity = 0.80, sensitivity = 0.85, positive predictive value = 0.58, negative predictive value = 0.94) and tau PET (area under the curve = 0.95, specificity = 1, sensitivity = 0.85, positive predictive value = 1, negative predictive value = 0.98). Higher baseline pTa u 217 levels were associated with worse cognitive trajectories ( ß ^ p T a u × a g e = -0.07 (-0.09, -0.06), P < 0.001). In a convenience sample of unimpaired adults, plasma pTa u 217 levels correlate well with concurrent brain Alzheimer's disease pathophysiology and with prospective cognitive performance. These data indicate that this marker can detect disease before clinical signs and thus may disambiguate presymptomatic Alzheimer's disease from normal cognitive ageing.
RESUMO
Human epidemiological studies reveal that dietary and environmental alterations influence the health of the offspring and that the effect is not limited to the F1 or F2 generations. Non-Mendelian transgenerational inheritance of traits in response to environmental stimuli has been confirmed in non-mammalian organisms including plants and worms and are shown to be epigenetically mediated. However, transgenerational inheritance beyond the F2 generation remains controversial in mammals. Our lab previously discovered that the treatment of rodents (rats and mice) with folic acid significantly enhances the regeneration of injured axons following spinal cord injury in vivo and in vitro, and the effect is mediated by DNA methylation. The potential heritability of DNA methylation prompted us to investigate the following question: Is the enhanced axonal regeneration phenotype inherited transgenerationally without exposure to folic acid supplementation in the intervening generations? In the present review, we condense our findings showing that a beneficial trait (i.e., enhanced axonal regeneration after spinal cord injury) and accompanying molecular alterations (i.e., DNA methylation), triggered by an environmental exposure (i.e., folic acid supplementation) to F0 animals only, are inherited transgenerationally and beyond the F3 generation.
RESUMO
BACKGROUND: Despite multiple studies suggesting that low 25(OH)D-vitamin levels are associated with worse outcomes in critically ill individuals, attempts to mitigate the outcomes by fixed dose enteral supplementation unguided by baseline or target blood levels have been unsuccessful. Since a single measurement of 25(OH)D may not optimally reflect an individual's vitamin D status, we studied the plasma concentration of different vitamin D metabolites and their recovery during and following resolution of acute critical illness. METHODS: A prospective observational study including patients 18 years and older admitted to a mixed medical-surgical ICU in Reykjavik, Iceland, located at a high-northern altitude (64° N). Vitamin D metabolites were measured at three timepoints; On admission (S1), 3-5 days following admission (S2) and after recovery from acute illness (median 178 days) (S3). Concentrations of total 25(OH)D-vitamin, cholecalciferol (D3 ), total 24,25(OH)D-vitamin, vitamin D binding protein (VDBP) were measured with LC-tandem mass spectrometry (LC-MS/MS) and free 25-(OH)D was measured with enzyme-linked immunosorbent assay. RESULTS: Most individuals were vitamin D deficient when assessed during critical illness, with 25(OH)D-vitamin levels under 30 ng/ml for 37/40 individuals at timepoint S1 and 34/38 at S2. After recovery, 18/30 patients were deficient at S3. Levels of all vitamin D metabolites measured were low during critical illness but rose substantially following resolution of acute illness. No strong correlation was found between markers of acute illness severity or duration and resolution of vitamin D metabolites in the interval between acute illness and recovery. CONCLUSIONS: In critically ill patients, levels of multiple vitamin D metabolites are low but substantial recovery occurs following resolution of acute illness. It is unclear whether a single metabolite is sufficient to assess vitamin D status of critically ill patients and guide potential supplementation.
Assuntos
Estado Terminal , Deficiência de Vitamina D , Humanos , Proteína de Ligação a Vitamina D , Cromatografia Líquida , Doença Aguda , Espectrometria de Massas em Tandem , Vitamina D , Colecalciferol , Vitaminas/análiseRESUMO
We recently reported the COVID-19-induced circulating leukocytes DNA methylation profile. Here, we hypothesized that some of these genes would persist differentially methylated after disease resolution. Fifteen participants previously hospitalized for SARS-CoV-2 infection were epityped one year after discharge. Of the 1505 acute illness-induced differentially methylated regions (DMRs) previously identified, we found 71 regions with persisted differentially methylated, with an average of 7 serial CpG positions per DMR. Sixty-four DMRs persisted hypermethylated, and 7 DMR persisted hypomethylated. These data are the first reported evidence that DNA methylation changes in circulating leukocytes endure long after recovery from acute illness.
Assuntos
COVID-19 , Metilação de DNA , Doença Aguda , COVID-19/genética , Ilhas de CpG , Humanos , SARS-CoV-2RESUMO
INTRODUCTION: Blood-based Alzheimer's disease (AD) biomarkers show promise, but pre-analytical protocol differences may pose problems. We examined seven AD blood biomarkers (amyloid beta [ A ß ] 42 , A ß 40 , phosphorylated tau [ p - ta u 181 , total tau [t-tau], neurofilament light chain [NfL], A ß 42 40 , and p - ta u 181 A ß 42 ) in three collection tube types (ethylenediaminetetraacetic acid [EDTA] plasma, heparin plasma, serum). METHODS: Plasma and serum were obtained from cerebrospinal fluid or amyloid positron emission tomography-positive and -negative participants (N = 38) in the Wisconsin Registry for Alzheimer's Prevention. We modeled AD biomarker values observed in EDTA plasma versus heparin plasma and serum, and assessed correspondence with brain amyloidosis. RESULTS: Results suggested bias due to tube type, but crosswalks are possible for some analytes, with excellent model fit for NfL ( R 2 = 0.94), adequate for amyloid ( R 2 = 0.40-0.69), and weaker for t-tau ( R 2 = 0.04-0.42) and p - ta u 181 ( R 2 = 0.22-0.29). Brain amyloidosis differentiated several measures, especially EDTA plasma pTa u 181 A ß 42 ( d = 1.29). DISCUSSION: AD biomarker concentrations vary by tube type. However, correlations for some biomarkers support harmonization across types, suggesting cautious optimism for use in banked blood.
RESUMO
BACKGROUND: There are no prior reports that compare differentially methylated regions of DNA in blood samples from COVID-19 patients to samples collected before the SARS-CoV-2 pandemic using a shared epigenotyping platform. We performed a genome-wide analysis of circulating blood DNA CpG methylation using the Infinium Human MethylationEPIC BeadChip on 124 blood samples from hospitalized COVID-19-positive and COVID-19-negative patients and compared these data with previously reported data from 39 healthy individuals collected before the pandemic. Prospective outcome measures such as COVID-19-GRAM risk-score and mortality were combined with methylation data. RESULTS: Global mean methylation levels did not differ between COVID-19 patients and healthy pre-pandemic controls. About 75% of acute illness-associated differentially methylated regions were located near gene promoter regions and were hypo-methylated in comparison with healthy pre-pandemic controls. Gene ontology analyses revealed terms associated with the immune response to viral infections and leukocyte activation; and disease ontology analyses revealed a predominance of autoimmune disorders. Among COVID-19-positive patients, worse outcomes were associated with a prevailing hyper-methylated status. Recursive feature elimination identified 77 differentially methylated positions predictive of COVID-19 severity measured by the GRAM-risk score. CONCLUSION: Our data contribute to the awareness that DNA methylation may influence the expression of genes that regulate COVID-19 progression and represent a targetable process in that setting.
Assuntos
COVID-19/sangue , COVID-19/mortalidade , Metilação de DNA/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , New York/epidemiologia , Estudos Prospectivos , SARS-CoV-2RESUMO
BACKGROUND: Understanding metabolic mechanisms associated with cognitive changes preceding an Alzheimer's disease (AD) diagnosis could advance our understanding of AD progression and inform preventive methods. OBJECTIVE: We investigated the metabolomics of the early changes in executive function and delayed recall, the earliest aspects of cognitive function to change in the course of AD development, in order to better understand mechanisms that could contribute to early stages and progression of this disease. METHODS: This investigation used longitudinal plasma samples from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort of participants who were dementia free at enrollment and enriched with a parental history of AD. Metabolomic profiles were quantified for 2,324 fasting plasma samples among 1,200 participants, each with up to three study visits, which occurred every two years. Metabolites were individually tested for association with executive function and delayed recall trajectories across age. RESULTS: Of 1,097 metabolites tested, levels of seven were associated with executive function trajectories, including an amino acid cysteine S-sulfate and three fatty acids, including erucate (22â:â1n9), while none were associated with delayed recall trajectories. Replication was attempted for four of these metabolites that were present in the Vietnam Era Twin Study of Aging (VETSA). Although none reached statistical significance, three of these associations showed consistent effectdirections. CONCLUSION: Our results suggest potential metabolomic mechanisms that could contribute to the earliest signs of cognitive decline. In particular, fatty acids may be associated with cognition in a manner that is more complex than previously suspected.
Assuntos
Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Cisteína/sangue , Cisteína/metabolismo , Progressão da Doença , Função Executiva , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Feminino , Humanos , Estudos Longitudinais , Masculino , Análise da Randomização Mendeliana , Rememoração Mental , Redes e Vias Metabólicas , Metabolômica , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Alterations in environmentally sensitive epigenetic mechanisms (e.g., DNA methylation) influence axonal regeneration in the spinal cord following sharp injury. Conventional DNA methylation detection methods using sodium bisulphite treatment do not distinguish between methylated and hydroxymethylated forms of cytosine, meaning that past studies report a composite of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). To identify the distinct contributions of DNA methylation modifications to axonal regeneration, we collected spinal cord tissue after sharp injury from untreated adult F3 male rats with enhanced regeneration of injured spinal axons or controls, derived from folate- or water-treated F0 lineages, respectively. Genomic DNA was profiled for genome-wide 5hmC levels, revealing 658 differentially hydroxymethylated regions (DhMRs). Genomic profiling with whole genome bisulphite sequencing disclosed regeneration-related alterations in composite 5mC + 5hmC DNA methylation levels at 2,260 differentially methylated regions (DMRs). While pathway analyses revealed that differentially hydroxymethylated and methylated genes are linked to biologically relevant axon developmental pathways, only 22 genes harbour both DhMR and DMRs. Since these differential modifications were more than 60 kilobases on average away from each other, the large majority of differential hydroxymethylated and methylated regions are unique with distinct functions in the axonal regeneration phenotype. These data highlight the importance of distinguishing independent contributions of 5mC and 5hmC levels in the central nervous system, and denote discrete roles for DNA methylation modifications in spinal cord injury and regeneration in the context of transgenerational inheritance.
Assuntos
Axônios/metabolismo , Metilação de DNA , Regeneração Nervosa/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Epigênese Genética , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , TranscriptomaRESUMO
The original version of this article unfortunately contained error in Figure 4a to where some of the text was overlapping.
RESUMO
Folate supplementation in F0 mating rodents increases regeneration of injured spinal axons in vivo in 4 or more generations of progeny (F1-F4) in the absence of interval folate administration to the progeny. Transmission of the enhanced regeneration phenotype to untreated progeny parallels axonal growth in neuron culture after in vivo folate administration to the F0 ancestors alone, in correlation with differential patterns of genomic DNA methylation and RNA transcription in treated lineages. Enhanced axonal regeneration phenotypes are observed with diverse folate preparations and routes of administration, in outbred and inbred rodent strains, and in two rodent genera comprising rats and mice, and are reversed in F4-F5 progeny by pretreatment with DNA demethylating agents prior to phenotyping. Uniform transmission of the enhanced regeneration phenotype to progeny together with differential patterns of DNA methylation and RNA expression is consistent with a non-Mendelian mechanism. The capacity of an essential nutritional co-factor to induce a beneficial transgenerational phenotype in untreated offspring carries broad implications for the diagnosis, prevention, and treatment of inborn and acquired disorders.
Assuntos
Ácido Fólico/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurônios/fisiologia , Administração Oral , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Azacitidina/farmacologia , Metilação de DNA/genética , Feminino , Ácido Fólico/administração & dosagem , Genoma , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Injeções Intraperitoneais , Masculino , Neurônios/efeitos dos fármacos , Fenótipo , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacosRESUMO
BACKGROUND: Pathogenic variants in the small GTPase Ras Analogue in Brain 39b (RAB39B) have been linked to the development of early-onset parkinsonism. The study was aimed at delineating the clinical and neuropathological features associated with a previously reported pathogenic variant in RAB39B (c.503C>A p.T168K) and testing for dysregulation of RAB39B in idiopathic PD. METHODS: Clinical details of a male individual hemizygous for the T168K variant were collected by systematic review of medical records. Neuropathological studies of fixed brain tissue were performed and steady-state RAB39B levels were determined by western blot analysis. RESULTS: Neuropathological examination showed extensive dopaminergic neuron loss, widespread Lewy pathology, and iron accumulation in the substantia nigra. Additional pathology was observed in the hippocampus and thalamus. Western blot analysis demonstrated that the T168K variant results in loss of RAB39B. In individuals with idiopathic PD (n = 10, 6 male/4 female), steady-state RAB39B was significantly reduced in the prefrontal cortex and substantia nigra. CONCLUSIONS: T168K RAB39B is unstable in vivo and associated with dopaminergic neuron loss and Lewy pathology. Dysregulation of RAB39B in the prefrontal cortex and substantia nigra of individuals with idiopathic PD potentially implicates the protein more broadly in the pathological mechanisms underlying PD and related Lewy body disorders. © 2020 International Parkinson and Movement Disorder Society.
Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Doença de Parkinson/genética , Substância Negra/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
BACKGROUND: Nitrous oxide can induce neurotoxicity. The authors hypothesized that exposure to nitrous oxide impairs axonal regeneration and functional recovery after central nervous system injury. METHODS: The consequences of single and serial in vivo nitrous oxide exposures on axon regeneration in four experimental male rat models of nervous system injury were measured: in vitro axon regeneration in cell culture after in vivo nitrous oxide administration, in vivo axon regeneration after sharp spinal cord injury, in vivo axon regeneration after sharp optic nerve injury, and in vivo functional recovery after blunt contusion spinal cord injury. RESULTS: In vitro axon regeneration 48 h after a single in vivo 70% N2O exposure is less than half that in the absence of nitrous oxide (mean ± SD, 478 ± 275 um; n = 48) versus 210 ± 152 um (n = 48; P < 0.0001). A single exposure to 80% N2O inhibits the beneficial effects of folic acid on in vivo axonal regeneration after sharp spinal cord injury (13.4 ± 7.1% regenerating neurons [n = 12] vs. 0.6 ± 0.7% regenerating neurons [n = 4], P = 0.004). Serial 80% N2O administration reverses the benefit of folic acid on in vivo retinal ganglion cell axon regeneration after sharp optic nerve injury (1277 ± 180 regenerating retinal ganglion cells [n = 7] vs. 895 ± 164 regenerating retinal ganglion cells [n = 7], P = 0.005). Serial 80% N2O exposures reverses the benefit of folic acid on in vivo functional recovery after blunt spinal cord contusion (estimate for fixed effects ± standard error of the estimate: folic acid 5.60 ± 0.54 [n = 9] vs. folic acid + 80% N2O 5.19 ± 0.62 [n = 7], P < 0.0001). CONCLUSIONS: These data indicate that nitrous oxide can impair the ability of central nervous system neurons to regenerate axons after sharp and blunt trauma.
Assuntos
Anestésicos Inalatórios/efeitos adversos , Regeneração Nervosa/efeitos dos fármacos , Óxido Nitroso/efeitos adversos , Traumatismos do Sistema Nervoso/patologia , Anestésicos Inalatórios/administração & dosagem , Animais , Células Cultivadas , Masculino , Regeneração Nervosa/fisiologia , Óxido Nitroso/administração & dosagem , Ratos , Ratos Sprague-Dawley , Traumatismos do Sistema Nervoso/fisiopatologiaRESUMO
Understanding how metabolites are longitudinally influenced by age and sex could facilitate the identification of metabolomic profiles and trajectories that indicate disease risk. We investigated the metabolomics of age and sex using longitudinal plasma samples from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort of participants who were dementia free at enrollment. Metabolomic profiles were quantified for 2,344 fasting plasma samples among 1,212 participants, each with up to three study visits. Of 1,097 metabolites tested, 623 (56.8%) were associated with age and 695 (63.4%) with sex after correcting for multiple testing. Approximately twice as many metabolites were associated with age in stratified analyses of women versus men, and 68 metabolite trajectories significantly differed by sex, most notably including sphingolipids, which tended to increase in women and decrease in men with age. Using genome-wide genotyping, we also report the heritabilities of metabolites investigated, which ranged dramatically (0.2-99.2%); however, the median heritability of 36.2% suggests that many metabolites are highly influenced by a complex combination of genomic and environmental influences. These findings offer a more profound description of the aging process and may inform many new hypotheses regarding the role metabolites play in healthy and accelerated aging.