Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2117464119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476522

RESUMO

As northern latitudes experience rapid winter warming, there is an urgent need to assess the effect of varying winter conditions on tree growth and forest carbon sequestration potential. We examined tree growth responses to variability in cold-season (November­April) frequency of freeze days (FFD) over 1951 to 2018 using tree-ring data from 35,217 trees and 57 species at 4,375 sites distributed across Canada. We found that annual radial growth responses to FFD varied by species, with some commonalities across genera and clades. The growth of gymnosperms with late spring leaf-out strategies was negatively related to FFD; years with high FFD were most detrimental to the annual growth of Pinus banksiana, Pinus contorta, Larix lyalli, Abies amabilis, and Abies lasiocarpa. In contrast, the growth of angiosperms with early leaf-out strategies, namely, Populus tremuloides and Betula papyrifera, was better in the coldest years, and gymnosperms with intermediate leaf-out timing, such as widespread Picea mariana and Picea glauca, had no consistent relationship to FFD. Tree growth responses to FFD were further modulated by tree size, tree age, regional climate (i.e., mean cold-season temperature), and local site conditions. Overall, our results suggest that moderately warming winters may temporarily improve the growth of widespread pines and some high-elevation conifers in western Canada, whereas warming winters may be detrimental to the growth of widespread boreal angiosperms. Our findings also highlight the value of using species-specific climate-growth relationships to refine predictions of forest carbon dynamics.


Assuntos
Florestas , Árvores , Sequestro de Carbono , Mudança Climática , Estações do Ano
2.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35241971

RESUMO

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

3.
Glob Chang Biol ; 24(6): 2284-2304, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29481709

RESUMO

Increasing tree mortality from global change drivers such as drought and biotic infestations is a widespread phenomenon, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and improve mortality forecasts: repeat forest inventories and satellite remote sensing. Time series of tree-level growth patterns indicate that productivity declines and related temporal dynamics often precede mortality years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized difference vegetation index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 24 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range of forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited. Longer-term NDVI data and annually remeasured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites remeasured at a typical 5 year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Florestas , Astronave , Árvores/fisiologia , Regiões Árticas , América do Norte , Fatores de Tempo , Árvores/crescimento & desenvolvimento
4.
Glob Chang Biol ; 23(12): 5297-5308, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28636146

RESUMO

Since 2001, climatic conditions have been notably drier than normal across large areas of the western Canadian interior, leading to widespread impacts on the forests of this region. This poses a major concern for the future, given climate change projections for continued warming and drying. We conducted tree-ring analysis in 75 pure stands of white spruce (Picea glauca) across Alberta and west-central Saskatchewan to examine the effects of recent climatic drying on the growth of this important boreal tree species. Allometric equations were used to calculate annual growth in aboveground tree biomass (GBM ) from ring width measurements. Results showed an increasing trend in GBM from the 1960s to the 1990s, followed by a sharp decline during the severe drought of 2001-2002. Of the 75 stands, only 18 recovered sufficiently to cause an increase in mean GBM from the predrought decade of 1991-2000 to the subsequent decade of 2001-2010. The remaining 57 stands exhibited a decline in mean GBM between these decades. Climatic drying was a major cause of the growth decline, as shown by the significant stand-level relationship between percentage change in decadal mean GBM and the change in decadal mean values of a climate moisture index from 1991-2000 to 2001-2010. Subsequent analyses of boreal stands sampled across Alberta during 2015 revealed that white spruce growth had declined even further as drought conditions intensified during 2014-2015. Overall, there was a 38% decrease in mean GBM between 1997 and 2015, but surprisingly, the percentage decrease was not significantly different for young, productive stands compared with older, less productive stands. Thus, stand ageing cannot explain the observed decline in white spruce growth during the past quarter century, suggesting that these forests are at risk if the trend towards more frequent, severe drought continues in the region.


Assuntos
Mudança Climática , Secas , Florestas , Picea/crescimento & desenvolvimento , Alberta , Biomassa , Saskatchewan , Árvores/crescimento & desenvolvimento
5.
Proc Natl Acad Sci U S A ; 113(52): E8406-E8414, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956624

RESUMO

Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration.


Assuntos
Dióxido de Carbono/química , Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Canadá , Ciclo do Carbono , Ecologia , Geografia , Modelos Estatísticos , Análise de Regressão , Taiga , Temperatura , Fatores de Tempo
6.
Glob Chang Biol ; 22(2): 627-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26507106

RESUMO

An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.


Assuntos
Mudança Climática , Modelos Teóricos , Picea/crescimento & desenvolvimento , Canadá , Dióxido de Carbono , Clima , Solo/química , Taiga , Temperatura , Água/análise
7.
Glob Chang Biol ; 21(5): 1968-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25393098

RESUMO

Increases in mortality of trembling aspen (Populus tremuloides Michx.) have been recorded across large areas of western North America following recent periods of exceptionally severe drought. The resultant increase in standing, dead tree biomass represents a significant potential source of carbon emissions to the atmosphere, but the timing of emissions is partially driven by dead-wood dynamics which include the fall down and breakage of dead aspen stems. The rate at which dead trees fall to the ground also strongly influences the period over which forest dieback episodes can be detected by aerial surveys or satellite remote sensing observations. Over a 12-year period (2000-2012), we monitored the annual status of 1010 aspen trees that died during and following a severe regional drought within 25 study areas across west-central Canada. Observations of stem fall down and breakage (snapping) were used to estimate woody biomass transfer from standing to downed dead wood as a function of years since tree death. For the region as a whole, we estimated that >80% of standing dead aspen biomass had fallen after 10 years. Overall, the rate of fall down was minimal during the year following stem death, but thereafter fall rates followed a negative exponential equation with k = 0.20 per year. However, there was high between-site variation in the rate of fall down (k = 0.08-0.37 per year). The analysis showed that fall down rates were positively correlated with stand age, site windiness, and the incidence of decay fungi (Phellinus tremulae (Bond.) Bond. and Boris.) and wood-boring insects. These factors are thus likely to influence the rate of carbon emissions from dead trees following periods of climate-related forest die-off episodes.


Assuntos
Carbono/metabolismo , Secas/mortalidade , Populus/fisiologia , Fatores Etários , Basidiomycota/fisiologia , Biomassa , Canadá , Populus/química , Populus/microbiologia , Vento
8.
Ecol Appl ; 2(3): 298-306, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27759264

RESUMO

Global warming and the resultant increase in evapotranspiration might lead to lowered water tables in peatlands and an increase in fire frequency. The objective of this study was to investigate some of the potential effects of these changes on peat decomposition. Dry mass losses and emissions of CO2 and CH4 from peat samples taken from three depth layers (0-10, 10-20, and 30-40 cm) of a black spruce peatland were measured in the laboratory at 8°, 16°, and 24°C under two moisture treatments. Effects of deep peat fire on decomposition were also simulated by burning the upper layer (0-10 cm) of peat and adding the ash to peat samples from the 10-20 cm layer. CH4 release averaged <1% of total carbon loss in flooded samples. Release of CO2 was 4-9 times greater from the 0-10 cm layer than from the 30-40 cm layer. After 120 d, the 30-40 cm layer had lost <1% of its original dry mass in all treatments. Higher temperatures strongly promoted decomposition of samples exposed to drying cycles but had little effect on decomposition of continuously flooded samples. Ash addition had variable effects on CO2 emissions but may have promoted CH4 production. It is suggested that in certain situations, global warming may not cause appreciable increases in carbon loss from peat deposits. The results indicate that some deeper peats are resistant to decay even when exposed to warm, aerobic conditions. However, further experimental work is needed to predict the long-term response of peat deposits to changes in water levels in different peatland types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA