Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617325

RESUMO

Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.

2.
PLoS Pathog ; 19(11): e1011781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976321

RESUMO

Human cytomegalovirus (HCMV) is an important pathogen for which new antiviral drugs are needed. HCMV, like other herpesviruses, encodes a nuclear egress complex (NEC) composed of two subunits, UL50 and UL53, whose interaction is crucial for viral replication. To explore whether small molecules can exert selective antiviral activity by inhibiting NEC subunit interactions, we established a homogeneous time-resolved fluorescence (HTRF) assay of these interactions and used it to screen >200,000 compound-containing wells. Two compounds, designated GK1 and GK2, which selectively inhibited this interaction in the HTRF assay with GK1 also active in a co-immunoprecipitation assay, exhibited more potent anti-HCMV activity than cytotoxicity or activity against another herpesvirus. At doses that substantially reduced HCMV plaque formation, GK1 and GK2 had little or no effect on the expression of viral proteins and reduced the co-localization of UL53 with UL50 at the nuclear rim in a subset of cells. GK1 and GK2 contain an acrylamide moiety predicted to covalently interact with cysteines, and an analog without this potential lacked activity. Mass spectrometric analysis showed binding of GK2 to multiple cysteines on UL50 and UL53. Nevertheless, substitution of cysteine 214 of UL53 with serine (C214S) ablated detectable inhibitory activity of GK1 and GK2 in vitro, and the C214S substitution engineered into HCMV conferred resistance to GK1, the more potent of the two inhibitors. Thus, GK1 exerts selective antiviral activity by targeting the NEC. Docking studies suggest that the acrylamide tethers one end of GK1 or GK2 to C214 within a pocket of UL53, permitting the other end of the molecule to sterically hinder UL50 to prevent NEC formation. Our results prove the concept that targeting the NEC with small molecules can selectively block HCMV replication. Such compounds could serve as a foundation for development of anti-HCMV drugs and as chemical tools for studying HCMV.


Assuntos
Citomegalovirus , Herpesviridae , Humanos , Núcleo Celular/metabolismo , Herpesviridae/metabolismo , Replicação Viral , Simplexvirus , Acrilamidas/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo
3.
J Gen Virol ; 104(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390009

RESUMO

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation.We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilized virus-like particles (VLPs) in Pichia pastoris.The stabilized VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilization, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralize virus in vitro. Therefore, anti-EVA71 neutralizing antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.


Assuntos
Infecções por Enterovirus , Enterovirus , Poliovirus , Vacinas , Criança , Humanos , Pré-Escolar , Antígenos Virais/genética , Poliovirus/genética , Anticorpos Antivirais
4.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778240

RESUMO

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation. We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilised virus-like particles (VLPs) in Pichia pastoris . The stabilised VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilisation, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralise virus in vitro . Therefore, the anti-EVA71 neutralising antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.

5.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622727

RESUMO

Genome transfer from a virus into a cell is a critical early step in viral replication. Enveloped viruses achieve the delivery of their genomes into the cytoplasm by merging the viral membrane with the cellular membrane via a conceptually simple mechanism called membrane fusion. In contrast, genome translocation mechanisms in nonenveloped viruses, which lack viral membranes, remain poorly understood. Although cellular assays provide useful information about cell entry and genome release, it is difficult to obtain detailed mechanistic insights due both to the inherent technical difficulties associated with direct visualization of these processes and to the prevalence of nonproductive events in cellular assays performed at a very high multiplicity of infection. To overcome these issues, we developed an in vitro single-particle fluorescence assay to characterize genome release from a nonenveloped virus (poliovirus) in real time using a tethered receptor-decorated liposome system. Our results suggest that poliovirus genome release is a complex process that consists of multiple rate-limiting steps. Interestingly, we found that the addition of exogenous wild-type capsid protein VP4, but not mutant VP4, enhanced the efficiency of genome translocation. These results, together with prior structural analysis, suggest that VP4 interacts with RNA directly and forms a protective, membrane-spanning channel during genome translocation. Furthermore, our data indicate that VP4 dynamically interacts with RNA, rather than forming a static tube for RNA translocation. This study provides new insights into poliovirus genome translocation and offers a cell-free assay that can be utilized broadly to investigate genome release processes in other nonenveloped viruses.IMPORTANCE The initial transfer of genomic material from a virus into a host cell is a key step in any viral infection. Consequently, understanding how viruses deliver their genomes into cells could reveal attractive therapeutic targets. Although conventional biochemical and cellular assays have provided useful information about cell entry, the mechanism used to deliver the viral genomes across the cellular membrane into the cytoplasm is not well characterized for nonenveloped viruses such as poliovirus. In this study, we developed a fluorescence imaging assay to visualize poliovirus genome release using a synthetic vesicle system. Our results not only provide new mechanistic insights into poliovirus genome translocation but also offer a cell-free assay to bridge gaps in understanding of this process in other nonenveloped viruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Genoma Viral/fisiologia , Imagem Óptica/métodos , Poliovirus/genética , Poliovirus/fisiologia , RNA Viral/metabolismo , Internalização do Vírus , Proteínas do Capsídeo/genética , Sistemas Computacionais , Células HeLa , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Técnicas In Vitro , Lipossomos/metabolismo
6.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563814

RESUMO

Nucleoside analogs are mainstays of antiviral therapy. Although resistance to these drugs hinders their use, understanding resistance can illuminate mechanisms of the drugs and their targets. Certain nucleoside analogs, such as ganciclovir (GCV), a leading therapy for human cytomegalovirus (HCMV), contain the equivalent of a 3'-hydoxyl moiety, yet their triphosphates can terminate genome synthesis (nonobligate chain termination). For ganciclovir, chain termination is delayed until incorporation of the subsequent nucleotide, after which viral polymerase idling (repeated addition and removal of incorporated nucleotides) prevents extension. Here, we investigated how an alanine-to-glycine substitution at residue 987 (A987G), in conserved motif V in the thumb subdomain of the catalytic subunit (Pol) of HCMV DNA polymerase, affects polymerase function to overcome delayed chain termination and confer ganciclovir resistance. Steady-state enzyme kinetic studies revealed no effects of this substitution on incorporation of ganciclovir-triphosphate into DNA that could explain resistance. We also found no effects of the substitution on Pol's exonuclease activity, and the mutant enzyme still exhibited idling after incorporation of GCV and the subsequent nucleotide. However, despite extending normal DNA primers similarly to wild-type enzyme, A987G Pol more rapidly extended ganciclovir-containing DNA primers, thereby overcoming chain termination. The mutant Pol also more rapidly extended RNA primers, a previously unreported activity for HCMV Pol. Structural analysis of related Pols bound to primer-templates provides a rationale for these results. These studies uncover a new drug resistance mechanism, potentially applicable to other nonobligate chain-terminating nucleoside analogs, and shed light on polymerase functions.IMPORTANCE While resistance to antiviral drugs can hinder their clinical use, understanding resistance mechanisms can illuminate how these drugs and their targets act. We studied a substitution in the human cytomegalovirus (HCMV) DNA polymerase that confers resistance to a leading anti-HCMV drug, ganciclovir. Ganciclovir is a nucleoside analog that terminates DNA replication after its triphosphate and the subsequent nucleotide are incorporated. We found that the substitution studied here results in an increased rate of extension of drug-containing DNA primers, thereby overcoming termination, which is a new mechanism of drug resistance. The substitution also induces more rapid extension of RNA primers, a function that had not previously been reported for HCMV polymerase. Thus, these results provide a novel resistance mechanism with potential implications for related nucleoside analogs that act against established and emerging viruses, and shed light on DNA polymerase functions.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Primers do DNA/genética , Farmacorresistência Viral/genética , Nucleosídeos/farmacologia , Substituição de Aminoácidos , Citomegalovirus/enzimologia , Citomegalovirus/genética , DNA Viral/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Cinética
7.
PLoS Pathog ; 16(9): e1008920, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32997730

RESUMO

The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.


Assuntos
Capsídeo/ultraestrutura , Poliomielite/metabolismo , RNA Viral/ultraestrutura , Vírion/ultraestrutura , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , RNA Viral/metabolismo , Receptores Virais/metabolismo , Vírion/metabolismo , Internalização do Vírus
8.
J Am Chem Soc ; 140(34): 10639-10643, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30094995

RESUMO

Here we present a modular method for manufacturing large-sized nanodiscs using DNA-origami barrels as scaffolding corrals. Large-sized nanodiscs can be produced by first decorating the inside of DNA barrels with small lipid-bilayer nanodiscs, which open up when adding extra lipid to form large nanodiscs of diameters ∼45 or ∼70 nm as prescribed by the enclosing barrel dimension. Densely packed membrane protein arrays are then reconstituted within these large nanodiscs for potential structure determination. Furthermore, we demonstrate the potential of these nanodiscs as model membranes to study poliovirus entry.


Assuntos
DNA/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Nanoestruturas/química , Colesterol/química , Humanos , Conformação de Ácido Nucleico , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Poliovirus/fisiologia , Receptores Virais/química , Rhodobacter sphaeroides/química , Internalização do Vírus , Canal de Ânion 1 Dependente de Voltagem/química
9.
ACS Infect Dis ; 3(2): 112-118, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183184

RESUMO

Human cytomegalovirus DNA polymerase comprises a catalytic subunit, UL54, and an accessory subunit, UL44, the interaction of which may serve as a target for the development of new antiviral drugs. Using a high-throughput screen, we identified a small molecule, (5-((dimethylamino)methylene-3-(methylthio)-6,7-dihydrobenzo[c]thiophen-4(5H)-one), that selectively inhibits the interaction of UL44 with a UL54-derived peptide in a time-dependent manner, full-length UL54, and UL44-dependent long-chain DNA synthesis. A crystal structure of the compound bound to UL44 revealed a covalent reaction with lysine residue 60 and additional noncovalent interactions that cause steric conflicts that would prevent the UL44 connector loop from interacting with UL54. Analyses of the reaction of the compound with model substrates supported a resonance-stabilized conjugation mechanism, and substitution of the lysine reduced the ability of the compound to inhibit UL44-UL54 peptide interactions. This novel covalent inhibitor of polymerase subunit interactions may serve as a starting point for new, needed drugs to treat human cytomegalovirus infections.


Assuntos
Antivirais/farmacologia , Citomegalovirus/enzimologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/metabolismo , Regulação Alostérica , Sítio Alostérico , Antivirais/química , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Ensaios de Triagem em Larga Escala , Humanos , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Proteínas Virais/química
10.
PLoS Pathog ; 13(2): e1006197, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166307

RESUMO

Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus) acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.


Assuntos
Infecções por Picornaviridae/metabolismo , Picornaviridae/patogenicidade , RNA Viral/metabolismo , Vírion/patogenicidade , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Lipossomos , Microscopia de Fluorescência , Picornaviridae/metabolismo
11.
Curr Opin Cell Biol ; 46: 9-16, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28086162

RESUMO

Herpesviruses, like most DNA viruses, replicate and package their genomes into capsids in the host cell nucleus. Capsids then transit to the cytoplasm in a fascinating process called nuclear egress, which includes several unusual steps: Movement of capsids from the nuclear interior to the periphery, disruption of the nuclear lamina, capsid budding through the inner nuclear membrane, and fusion of enveloped particles with the outer nuclear membrane. Here, we review recent advances and emerging questions relating to herpesvirus nuclear egress, emphasizing controversies regarding mechanisms for capsid trafficking to the nuclear periphery, and implications of recent structures of the two-subunit, viral nuclear egress complex for the process, particularly at the step of budding through the inner nuclear membrane.


Assuntos
Transporte Biológico , Núcleo Celular/virologia , Herpesviridae/fisiologia , Membrana Nuclear/virologia , Animais , Capsídeo/química , Capsídeo/fisiologia , Núcleo Celular/química , Citoplasma/virologia , Humanos , Modelos Moleculares , Membrana Nuclear/química , Lâmina Nuclear/virologia
12.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852863

RESUMO

By using cryo-electron microscopy, expanded 80S-like poliovirus virions (poliovirions) were visualized in complexes with four 80S-specific camelid VHHs (Nanobodies). In all four complexes, the VHHs bind to a site on the top surface of the capsid protein VP3, which is hidden in the native virus. Interestingly, although the four VHHs bind to the same site, the structures of the expanded virus differ in detail in each complex, suggesting that each of the Nanobodies has sampled a range of low-energy structures available to the expanded virion. By stabilizing unique structures of expanded virions, VHH binding permitted a more detailed view of the virus structure than was previously possible, leading to a better understanding of the expansion process that is a critical step in infection. It is now clear which polypeptide chains become disordered and which become rearranged. The higher resolution of these structures also revealed well-ordered conformations for the EF loop of VP2, the GH loop of VP3, and the N-terminal extensions of VP1 and VP2, which, in retrospect, were present in lower-resolution structures but not recognized. These structural observations help to explain preexisting mutational data and provide insights into several other stages of the poliovirus life cycle, including the mechanism of receptor-triggered virus expansion. IMPORTANCE: When poliovirus infects a cell, it undergoes a change in its structure in order to pass RNA through its protein coat, but this altered state is short-lived and thus poorly understood. The structures of poliovirus bound to single-domain antibodies presented here capture the altered virus in what appear to be intermediate states. A careful analysis of these structures lets us better understand the molecular mechanism of infection and how these changes in the virus lead to productive-infection events.


Assuntos
Microscopia Crioeletrônica , Poliovirus/ultraestrutura , Vírion/ultraestrutura , Sequência de Aminoácidos , Capsídeo/imunologia , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Humanos , Modelos Moleculares , Poliovirus/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Relação Estrutura-Atividade , Vírion/metabolismo
13.
Nat Methods ; 14(1): 49-52, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869813

RESUMO

We engineered covalently circularized nanodiscs (cNDs) which, compared with standard nanodiscs, exhibit enhanced stability, defined diameter sizes and tunable shapes. Reconstitution into cNDs enhanced the quality of nuclear magnetic resonance spectra for both VDAC-1, a ß-barrel membrane protein, and the G-protein-coupled receptor NTR1, an α-helical membrane protein. In addition, we used cNDs to visualize how simple, nonenveloped viruses translocate their genomes across membranes to initiate infection.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Receptores de Neurotensina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Poliomielite/metabolismo , Poliomielite/virologia , Poliovirus/fisiologia , Internalização do Vírus
14.
J Virol ; 90(7): 3496-505, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764003

RESUMO

UNLABELLED: Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE: We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Poliovirus/imunologia , Receptores Virais/imunologia , Anticorpos de Domínio Único/imunologia , Sequência de Aminoácidos , Sítios de Ligação/imunologia , Capsídeo/ultraestrutura , Proteínas do Capsídeo/imunologia , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Células HeLa , Humanos , Alinhamento de Sequência , Anticorpos de Domínio Único/ultraestrutura
15.
EMBO J ; 34(23): 2937-52, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26511021

RESUMO

Herpesvirus nucleocapsids escape from the nucleus in a process orchestrated by a highly conserved, viral nuclear egress complex. In human cytomegalovirus, the complex consists of two proteins, UL50 and UL53. We solved structures of versions of UL53 and the complex by X-ray crystallography. The UL53 structures, determined at 1.93 and 3.0 Å resolution, contained unexpected features including a Bergerat fold resembling that found in certain nucleotide-binding proteins, and a Cys3His zinc finger. Substitutions of zinc-coordinating residues decreased UL50-UL53 co-localization in transfected cells, and, when incorporated into the HCMV genome, ablated viral replication. The structure of the complex, determined at 2.47 Å resolution, revealed a mechanism of heterodimerization in which UL50 clamps onto helices of UL53 like a vise. Substitutions of particular residues on the interaction interface disrupted UL50-UL53 co-localization in transfected cells and abolished virus production. The structures and the identification of contacts can be harnessed toward the rational design of novel and highly specific antiviral drugs and will aid in the detailed understanding of nuclear egress.


Assuntos
Herpesviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Cristalografia por Raios X , Genoma Viral/genética , Estrutura Secundária de Proteína , Replicação Viral/genética , Replicação Viral/fisiologia
16.
Proc Natl Acad Sci U S A ; 112(29): 9010-5, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26150520

RESUMO

Herpesviruses require a nuclear egress complex (NEC) for efficient transit of nucleocapsids from the nucleus to the cytoplasm. The NEC orchestrates multiple steps during herpesvirus nuclear egress, including disruption of nuclear lamina and particle budding through the inner nuclear membrane. In the important human pathogen human cytomegalovirus (HCMV), this complex consists of nuclear membrane protein UL50, and nucleoplasmic protein UL53, which is recruited to the nuclear membrane through its interaction with UL50. Here, we present an NMR-determined solution-state structure of the murine CMV homolog of UL50 (M50; residues 1-168) with a strikingly intricate protein fold that is matched by no other known protein folds in its entirety. Using NMR methods, we mapped the interaction of M50 with a highly conserved UL53-derived peptide, corresponding to a segment that is required for heterodimerization. The UL53 peptide binding site mapped onto an M50 surface groove, which harbors a large cavity. Point mutations of UL50 residues corresponding to surface residues in the characterized M50 heterodimerization interface substantially decreased UL50-UL53 binding in vitro, eliminated UL50-UL53 colocalization, prevented disruption of nuclear lamina, and halted productive virus replication in HCMV-infected cells. Our results provide detailed structural information on a key protein-protein interaction involved in nuclear egress and suggest that NEC subunit interactions can be an attractive drug target.


Assuntos
Núcleo Celular/metabolismo , Herpesviridae/metabolismo , Subunidades Proteicas/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Calorimetria , Bases de Dados de Proteínas , Descoberta de Drogas , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Muromegalovirus , Mutação/genética , Lâmina Nuclear/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Soluções , Relação Estrutura-Atividade
17.
Antimicrob Agents Chemother ; 59(8): 4695-706, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014941

RESUMO

To complete the eradication of poliovirus and to protect unvaccinated people subsequently, the development of one or more antiviral drugs will be necessary. A set of five single-domain antibody fragments (variable parts of the heavy chain of a heavy-chain antibody [VHHs]) with an in vitro neutralizing activity against poliovirus type 1 was developed previously (B. Thys, L. Schotte, S. Muyldermans, U. Wernery, G. Hassanzadeh-Ghassabeh, and B. Rombaut, Antiviral Res 87:257-264, 2010, http://dx.doi.org/10.1016/j.antiviral.2010.05.012), and their mechanisms of action have been studied (L. Schotte, M. Strauss, B. Thys, H. Halewyck, D. J. Filman, M. Bostina, J. M. Hogle, and B. Rombaut, J Virol 88:4403-4413, 2014, http://dx.doi.org/10.1128/JVI.03402-13). In this study, neutralization escape mutants were selected for each VHH. Sequencing of the P1 region of the genome showed that amino acid substitutions are found in the four viral proteins of the capsid and that they are located both in proximity to the binding sites of the VHHs and in regions further away from the canyon and hidden beneath the surface. Characterization of the mutants demonstrated that they have single-cycle replication kinetics that are similar to those of their parental strain and that they are all drug (VHH) independent. Their resistant phenotypes are stable, as they do not regain full susceptibility to the VHH after passage over HeLa cells in the absence of VHH. They are all at least as stable as the parental strain against heat inactivation at 44°C, and three of them are even significantly (P < 0.05) more resistant to heat inactivation. The resistant variants all still can be neutralized by at least two other VHHs and retain full susceptibility to pirodavir and 35-1F4.


Assuntos
Anticorpos Neutralizantes/imunologia , Fragmentos de Imunoglobulinas/imunologia , Mutação/imunologia , Poliovirus/imunologia , Substituição de Aminoácidos/imunologia , Antivirais/farmacologia , Sítios de Ligação/imunologia , Proteínas do Capsídeo/imunologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Poliovirus/efeitos dos fármacos , Proteínas Virais/imunologia
18.
J Virol ; 89(8): 4143-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631086

RESUMO

UNLABELLED: Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called "pocket factor"), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. IMPORTANCE: The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are reminiscent of the nectin family, by involving the burying of otherwise-exposed hydrophobic groups. Importantly, poliovirus expansion is regulated by the binding of a lipid molecule within the viral capsid. We show that receptor binding either causes this molecule to be expelled or requires it, but that its loss is not sufficient to trigger irreversible expansion. Based on our model, we propose testable hypotheses to explain how the viral shell becomes destabilized, leading to RNA uncoating. These findings give us a better understanding of how poliovirus has evolved to exploit a natural process of its host to penetrate the membrane barrier.


Assuntos
Moléculas de Adesão Celular/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Poliovirus/química , Poliovirus/fisiologia , Receptores Virais/química , Receptores Virais/metabolismo , Internalização do Vírus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica , Células HeLa , Humanos , Nectinas , Poliovirus/metabolismo
19.
J Virol ; 89(1): 523-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339763

RESUMO

UNLABELLED: Herpesvirus nucleocapsids exit the host cell nucleus in an unusual process known as nuclear egress. The human cytomegalovirus (HCMV) UL97 protein kinase is required for efficient nuclear egress, which can be explained by its phosphorylation of the nuclear lamina component lamin A/C, which disrupts the nuclear lamina. We found that a dominant negative lamin A/C mutant complemented the replication defect of a virus lacking UL97 in dividing cells, validating this explanation. However, as complementation was incomplete, we investigated whether the HCMV nuclear egress complex (NEC) subunits UL50 and UL53, which are required for nuclear egress and recruit UL97 to the nuclear rim, are UL97 substrates. Using mass spectrometry, we detected UL97-dependent phosphorylation of UL50 residue S216 (UL50-S216) and UL53-S19 in infected cells. Moreover, UL53-S19 was specifically phosphorylated by UL97 in vitro. Notably, treatment of infected cells with the UL97 inhibitor maribavir or infection with a UL97 mutant led to a punctate rather than a continuous distribution of the NEC at the nuclear rim. Alanine substitutions in both UL50-S216 and UL53-S19 resulted in a punctate distribution of the NEC in infected cells and also decreased virus production and nuclear egress in the absence of maribavir. These results indicate that UL97 phosphorylates the NEC and suggest that this phosphorylation modulates nuclear egress. Thus, the UL97-NEC interaction appears to recruit UL97 to the nuclear rim both for disruption of the nuclear lamina and phosphorylation of the NEC. IMPORTANCE: Human cytomegalovirus (HCMV) causes birth defects and it can cause life-threatening diseases in immunocompromised patients. HCMV assembles in the nucleus and then translocates to the cytoplasm in an unusual process termed nuclear egress, an attractive target for antiviral therapy. A viral enzyme, UL97, is important for nuclear egress. It has been proposed that this is due to its role in disruption of the nuclear lamina, which would otherwise impede nuclear egress. In validating this proposal, we showed that independent disruption of the lamina can overcome a loss of UL97, but only partly, suggesting additional roles for UL97 during nuclear egress. We then found that UL97 phosphorylates the viral nuclear egress complex (NEC), which is essential for nuclear egress, and we obtained evidence that this phosphorylation modulates this process. Our results highlight a new role for UL97, the mutual dependence of the viral NEC and UL97 during nuclear egress, and differences among herpesviruses.


Assuntos
Núcleo Celular/virologia , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Liberação de Vírus , Humanos , Lamina Tipo A/metabolismo , Espectrometria de Massas , Fosforilação
20.
J Biol Chem ; 289(52): 36229-48, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25378410

RESUMO

RNA viruses encoding high- or low-fidelity RNA-dependent RNA polymerases (RdRp) are attenuated. The ability to predict residues of the RdRp required for faithful incorporation of nucleotides represents an essential step in any pipeline intended to exploit perturbed fidelity as the basis for rational design of vaccine candidates. We used x-ray crystallography, molecular dynamics simulations, NMR spectroscopy, and pre-steady-state kinetics to compare a mutator (H273R) RdRp from poliovirus to the wild-type (WT) enzyme. We show that the nucleotide-binding site toggles between the nucleotide binding-occluded and nucleotide binding-competent states. The conformational dynamics between these states were enhanced by binding to primed template RNA. For the WT, the occluded conformation was favored; for H273R, the competent conformation was favored. The resonance for Met-187 in our NMR spectra reported on the ability of the enzyme to check the correctness of the bound nucleotide. Kinetic experiments were consistent with the conformational dynamics contributing to the established pre-incorporation conformational change and fidelity checkpoint. For H273R, residues comprising the active site spent more time in the catalytically competent conformation and were more positively correlated than the WT. We propose that by linking the equilibrium between the binding-occluded and binding-competent conformations of the nucleotide-binding pocket and other active-site dynamics to the correctness of the bound nucleotide, faithful nucleotide incorporation is achieved. These studies underscore the need to apply multiple biophysical and biochemical approaches to the elucidation of the physical basis for polymerase fidelity.


Assuntos
Poliovirus/enzimologia , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Domínio Catalítico , Cristalografia por Raios X , Cinética , Simulação de Dinâmica Molecular , Mutação , Mutação de Sentido Incorreto , Nucleotídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , RNA Viral/química , RNA Viral/fisiologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA