Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Neurochem ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374262

RESUMO

Astrocytes are the principle glial cells of the central nervous system and play an active role in maintaining proper metabolism in surrounding neurons. Because of their involvement in metabolic control, it is likely that their physiology changes in response to metabolic diseases such as diabetes and associated diabetic retinopathy. Here, we investigated whether microstructural changes in astrocyte morphology occur during the early stages of chronic hyperglycemia that may be indicative of early pathogenic programs. We used MORF3 mice in conjunction with streptozotocin-induced hyperglycemia to investigate the morphology of single retinal astrocytes at an early timepoint in diabetic disease. We report that astrocytes initiate a morphological remodeling program, which depends on both the glycemic background and the presence of intravitreal injury, to alter the amount of the neuronal-associated pad and bristle microstructural motifs. Additionally, hyperglycemia increases astrocyte uptake of cholera toxin B, possibly reflecting changes in glycolipid and glycoprotein biosynthesis. Chronic hyperglycemia coupled with intravitreal injection of cholera toxin B also causes extensive leukocyte infiltration into the retina. Our results have important clinical relevance as current therapies for diabetic retinopathy involve intravitreal injection of pharmaceuticals in individuals with often poorly controlled blood glucose levels.

2.
Sci Rep ; 14(1): 26159, 2024 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-39478033

RESUMO

The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)). A high proportion of their biological activity is attributed to CXCR2 activation, thus many CXCR2 inhibitors are in clinical trials for several chronic diseases. However, CXCR2 inhibition is often only investigated acutely in these trials or in Cxcr2-/- mice grown in gnotobiotic conditions. Since humans do not live in germ-free environments, our first goal is to highlight novel retinal and systemic observations in Cxcr2-/- mice grown in non-gnotobiotic conditions that suggest potential harmful consequences of long-term CXCR2 deficiency or blockade. Beyond confirmation of circulating blood/immune cell-related phenotypes, we report novel findings in Cxcr2-/- mice including: (1) delayed dye transit to the retinal vasculature, (2) alterations in the density and distribution of retinal vessels, astrocytes and microglia, (3) decreased electroretinogram a- and b-wave amplitudes, (4) reduced visual acuity, and (5) increased polymorphonuclear cell accumulation in vascular lumina abutting venular walls in the retina and in vital non-ocular tissues (lung and liver). Furthermore, PheWAS of CXCR2 CXCR1, and ACKR1 gene variants using data from UK Biobank participants suggest clinical associations with both retinal and vascular disease phenotypes. We conclude that chronic CXCR2 deficiency in mice contributes to functional damage to the retina and that the long-term safety of CXCR1/2 inhibitors designed for chronic use in humans should be explored before clinical adoption to safeguard sight and overall vascular health.


Assuntos
Camundongos Knockout , Receptores de Interleucina-8B , Animais , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/antagonistas & inibidores , Camundongos , Vasos Retinianos/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Masculino , Retina/metabolismo , Retina/patologia , Retina/efeitos dos fármacos , Eletrorretinografia , Camundongos Endogâmicos C57BL , Humanos
3.
Glia ; 72(7): 1356-1370, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38591270

RESUMO

Astrocytes throughout the central nervous system are heterogeneous in both structure and function. This diversity leads to tissue-specific specialization where morphology is adapted to the surrounding neuronal circuitry, as seen in Bergman glia of the cerebellum and Müller glia of the retina. Because morphology can be a differentiating factor for cellular classification, we recently developed a mouse where glial-fibrillary acidic protein (GFAP)-expressing cells stochastically label for full membranous morphology. Here we utilize this tool to investigate whether morphological and electrophysiological features separate types of mouse retinal astrocytes. In this work, we report on a novel glial population found in the inner plexiform layer and ganglion cell layer which expresses the canonical astrocyte markers GFAP, S100ß, connexin-43, Sox2 and Sox9. Apart from their retinal layer localization, these cells are unique in their radial distribution. They are notably absent from the mid-retina but are heavily concentrated near the optic nerve head, and to a lesser degree the peripheral retina. Additionally, their morphology is distinct from both nerve fiber layer astrocytes and Müller glia, appearing more similar to amacrine cells. Despite this structural similarity, these cells lack protein expression of common neuronal markers. Additionally, they do not exhibit action potentials, but rather resemble astrocytes and Müller glia in their small amplitude, graded depolarization to both light onset and offset. Their structure, protein expression, physiology, and intercellular connections suggest that these cells are astrocytic, displaced from their counterparts in the nerve fiber layer. As such, we refer to these cells as displaced retinal astrocytes.


Assuntos
Astrócitos , Camundongos Transgênicos , Retina , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Retina/citologia , Retina/metabolismo , Retina/fisiologia , Camundongos , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BL , Potenciais de Ação/fisiologia
4.
Science ; 383(6686): 1009-1014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422144

RESUMO

Riverine ecosystems have adapted to natural discharge variations across seasons. However, evidence suggesting that climate change has already impacted magnitudes of river flow seasonality is limited to local studies, mainly focusing on changes of mean or extreme flows. This study introduces the use of apportionment entropy as a robust measure to assess flow-volume nonuniformity across seasons, enabling a global analysis. We found that ~21% of long-term river gauging stations exhibit significant alterations in seasonal flow distributions, but two-thirds of these are unrelated to trends in annual mean discharge. By combining a data-driven runoff reconstruction with state-of-the-art hydrological simulations, we identified a discernible weakening of river flow seasonality in northern high latitudes (above 50°N), a phenomenon directly linked to anthropogenic climate forcing.

5.
Glob Chang Biol ; 30(1): e16999, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921241

RESUMO

Peatlands are globally important stores of soil carbon (C) formed over millennial timescales but are at risk of destabilization by human and climate disturbance. Pools are ubiquitous features of many peatlands and can contain very high concentrations of C mobilized in dissolved and particulate organic form and as the greenhouses gases carbon dioxide (CO2 ) and methane (CH4 ). The radiocarbon content (14 C) of these aquatic C forms tells us whether pool C is generated by contemporary primary production or from destabilized C released from deep peat layers where it was previously stored for millennia. We present novel 14 C and stable C (δ13 C) isotope data from 97 aquatic samples across six peatland pool locations in the United Kingdom with a focus on dissolved and particulate organic C and dissolved CO2 . Our observations cover two distinct pool types: natural peatland pools and those formed by ditch blocking efforts to rewet peatlands (restoration pools). The pools were dominated by contemporary C, with the majority of C (~50%-75%) in all forms being younger than 300 years old. Both pool types readily transform and decompose organic C in the water column and emit CO2 to the atmosphere, though mixing with the atmosphere and subsequent CO2 emissions was more evident in natural pools. Our results show little evidence of destabilization of deep, old C in natural or restoration pools, despite the presence of substantial millennial-aged C in the surrounding peat. One possible exception is CH4 ebullition (bubbling), with our observations showing that millennial-aged C can be emitted from peatland pools via this pathway. Our results suggest that restoration pools formed by ditch blocking are effective at preventing the release of deep, old C from rewetted peatlands via aquatic export.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Humanos , Idoso , Dióxido de Carbono/análise , Ciclo do Carbono , Solo , Mudança Climática
6.
Front Neurosci ; 17: 1244679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621717

RESUMO

Astrocytes are important regulators of blood flow and play a key role in the response to injury and disease in the central nervous system (CNS). Despite having an understanding that structural changes to these cells have consequences for local neurovascular physiology, individual astrocyte morphology remains largely unexplored in the retina. Here, we used MORF3 mice to capture full membranous morphology for over fifteen hundred individual astrocytes in the mouse retina, a highly metabolically active component of the CNS. We demonstrate that retinal astrocytes have been misrepresented as stellate in morphology due to marker use like GFAP and S100ß which underestimates cell complexity. We also find that astrocytes contain recurring morphological motifs which are predictive of the underlying neurovascular architecture of the inner retina and suggestive of function. These motifs predict fine sampling and integration of retinal ganglion cell electrical activity with consequences for blood flow regulation. Additionally, our data shows that astrocytes participate in neurovascular interactions to a much greater degree than currently reported. 100% of cells contact the vasculature through one of three mutually exclusive classes of connections. Similarly, 100% of cells contact some neuronal element, be it an RGC axon or soma. Finally, we report that astrocyte morphology depends on retinal eccentricity, with cells appearing compressed near the nerve head and in the periphery. These results reveal a large degree of astrocyte morphological complexity that informs their contribution to neurovascular coupling in the retina.

7.
Glob Chang Biol ; 29(24): 7001-7011, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37477066

RESUMO

Mountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on "closed-loop" mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land-use change. We detect a total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring at greater distances from the coast. Spatially, we find that temperature is the main climatic driver of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position in temperate zones. Temporally, we show that 70% of CLMT have moved upward, with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. Our work provides a new mountain treeline database that isolates climate impacts from other anthropogenic pressures, and has important implications for biodiversity, natural resources, and ecosystem adaptation in a changing climate.


Assuntos
Ecossistema , Árvores , Humanos , Temperatura , Mudança Climática , Biodiversidade
8.
Front Neurosci ; 17: 1148950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260844

RESUMO

The intraepithelial sub-basal nerve plexus of the cornea is characterized by a central swirl of nerve processes that terminate between the apical cells of the epithelium. This plexus is a critical component of maintaining homeostatic function of the ocular surface. The cornea contains a high concentration of collagen, which is susceptible to damage in conditions such as neuropathic pain, neurotrophic keratitis, and dry eye disease. Here we tested whether topical application of a collagen mimetic peptide (CMP) is efficacious in repairing the corneal sub-basal nerve plexus in a mouse model of ocular surface desiccation. We induced corneal tear film reduction, epithelial damage, and nerve bed degradation through a combination of environmental and pharmaceutical (atropine) desiccation. Mice were subjected to desiccating air flow and bilateral topical application of 1% atropine solution (4× daily) for 2 weeks. During the latter half of this exposure, mice received topical vehicle [phosphate buffered saline (PBS)] or CMP [200 µm (Pro-Pro-Gly)7, 10 µl] once daily, 2 h prior to the first atropine treatment for that day. After euthanasia, cornea were labeled with antibodies against ßIII tubulin to visualize and quantify changes to the nerve bed. For mice receiving vehicle only, the two-week desiccation regimen reduced neuronal coverage of the central sub-basal plexus and epithelial terminals compared to naïve, with some corneas demonstrating complete degeneration of nerve beds. Accordingly, both sub-basal and epithelial ßIII tubulin-labeled processes demonstrated increased fragmentation, indicative of nerve disassembly. Treatment with CMP significantly reduced nerve fragmentation, expanded both sub-basal and epithelial neuronal coverage compared to vehicle controls, and improved corneal epithelium integrity, tear film production, and corneal sensitivity. Together, these results indicate that topical CMP significantly counters neurodegeneration characteristic of corneal surface desiccation. Repairing underlying collagen in conditions that damage the ocular surface could represent a novel therapeutic avenue in treating a broad spectrum of diseases or injury.

9.
Int J Equity Health ; 22(1): 106, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37245037

RESUMO

BACKGROUND: The Leave No One Behind (LNOB) agenda compels sexual and reproductive health and rights (SRHR) implementers to focus on the multiple and intersecting forms of discrimination and inequalities. One strategy to address these is Payment by Results (PbR). Using the Women's Integrated Sexual Health (WISH) programme as a case study, this paper examines if and how PbR can ensure equitable reach and impact. METHODS: Given the complexity of PbR mechanisms, a theory-based approach was used in the design and analysis of this evaluation, drawing on four case studies. These were conducted by reviewing global and national programme data and by interviewing 50 WISH partner staff at national level and WISH programme staff at global and regional levels. RESULTS: The case studies found that inclusion of equity-based indicators in the PbR mechanism had demonstrable effects on people's incentives, on how systems work, and on modes of working. The WISH programme was successful in achieving its desired programme indicators. The use of Key Performance Indicators (KPIs) clearly incentivised several strategies for service providers to innovate and reach adolescents and people living in poverty. However, there were trade-offs between performance indicators that increased coverage and others that increased equitable access, as well as several systemic challenges that limited the possible incentive effects. CONCLUSIONS: The use of PbR KPIs incentivised several strategies to reach adolescents and people living in poverty. However, the use of global indicators was too simplistic, resulting in several methodological issues.


Assuntos
Serviços de Saúde Reprodutiva , Saúde Sexual , Adolescente , Humanos , Feminino , Anticoncepcionais , Saúde Reprodutiva , Motivação
10.
Glob Chang Biol ; 29(14): 4056-4068, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114848

RESUMO

Peatland pools are freshwater bodies that are highly dynamic aquatic ecosystems because of their small size and their development in organic-rich sediments. However, our ability to understand and predict their contribution to both local and global biogeochemical cycles under rapidly occurring environmental change is limited because the spatiotemporal drivers of their biogeochemical patterns and processes are poorly understood. We used (1) pool biogeochemical data from 20 peatlands in eastern Canada, the United Kingdom, and southern Patagonia and (2) multi-year data from an undisturbed peatland of eastern Canada, to determine how climate and terrain features drive the production, delivering and processing of carbon (C), nitrogen (N), and phosphorus (P) in peatland pools. Across sites, climate (24%) and terrain (13%) explained distinct portions of the variation in pool biogeochemistry, with climate driving spatial differences in pool dissolved organic C (DOC) concentration and aromaticity. Within the multi-year dataset, DOC, carbon dioxide (CO2 ), total N concentrations, and DOC aromaticity were highest in the shallowest pools and at the end of the growing seasons, and increased gradually from 2016 to 2021 in relation to a combination of increases in summer precipitation, mean air temperature for the previous fall, and number of extreme summer heat days. Given the contrasting effects of terrain and climate, broad-scale terrain characteristics may offer a baseline for the prediction of small-scale pool biogeochemistry, while broad-scale climate gradients and relatively small year-to-year variations in local climate induce a noticeable response in pool biogeochemistry. These findings emphasize the reactivity of peatland pools to both local and global environmental change and highlight their potential to act as widely distributed climate sentinels within historically relatively stable peatland ecosystems.


Assuntos
Clima , Ecossistema , Estações do Ano , Água Doce , Temperatura , Solo
11.
J Environ Manage ; 339: 117935, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075635

RESUMO

Mesh tracks on peatlands are often granted permits on a temporary basis under the presumption that the tracks are either removed at the end of their permitted use or remain unused in situ. However, the fragility of peatland habitats and poor resilience of the specialist plant communities within them, mean that these linear disturbances may persist post-abandonment or post-removal. We removed sections of mesh track, abandoned five years earlier, from a blanket peatland using two different removal treatment methods (mown and unprepared) and studied a third treatment with sections left in place over a period of 19 months. On abandoned tracks, invasive species including Campylopus introflexus and Deschampsia flexulosa had established, while track removal led to extensive loss of Sphagnum species. Loss of surficial nanotopographic vegetation structures during track removal was extensive, and micro-erosion features were prevalent in both removal treatments. Abandoned sections of track performed comparably better across all metrics than removed sections. However, similarity between the vegetation assemblage of the abandoned track and the controls was <40% at the study outset, with NMDS (Non-metric Multidimensional Scaling) highlighting divergences. There was a mean species loss of 5 per quadrat for the removed sections. Bare peat was present in 52% of all track quadrats by the finish of the study. Our findings suggest that mesh tracks left in situ and track removal both present significant barriers to recovery and additional conservation interventions may be required after peatland tracks are abandoned.


Assuntos
Espécies Introduzidas , Sphagnopsida , Solo
12.
Front Neurosci ; 17: 1142668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051140

RESUMO

Introduction: Identification of early adaptive and maladaptive neuronal stress responses is an important step in developing targeted neuroprotective therapies for degenerative disease. In glaucoma, retinal ganglion cells (RGCs) and their axons undergo progressive degeneration resulting from stress driven by sensitivity to intraocular pressure (IOP). Despite therapies that can effectively manage IOP many patients progress to vision loss, necessitating development of neuronal-based therapies. Evidence from experimental models of glaucoma indicates that early in the disease RGCs experience altered excitability and are challenged with dysregulated potassium (K+) homeostasis. Previously we demonstrated that certain RGC types have distinct excitability profiles and thresholds for depolarization block, which are associated with sensitivity to extracellular K+. Methods: Here, we used our inducible mouse model of glaucoma to investigate how RGC sensitivity to K+ changes with exposure to elevated IOP. Results: In controls, conditions of increased K+ enhanced membrane depolarization, reduced action potential generation, and widened action potentials. Consistent with our previous work, 4 weeks of IOP elevation diminished RGC light-and current-evoked responses. Compared to controls, we found that IOP elevation reduced the effects of increased K+ on depolarization block threshold, with IOP-exposed cells maintaining greater excitability. Finally, IOP elevation did not alter axon initial segment dimensions, suggesting that structural plasticity alone cannot explain decreased K+ sensitivity. Discussion: Thus, in response to prolonged IOP elevation RGCs undergo an adaptive process that reduces sensitivity to changes in K+ while diminishing excitability. These experiments give insight into the RGC response to IOP stress and lay the groundwork for mechanistic investigation into targets for neuroprotective therapy.

14.
J Environ Manage ; 325(Pt B): 116561, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334446

RESUMO

Temporary permissions are often granted for track use on peatlands. However, even when peatland track designs attempt to minimise environmental impacts via use of mesh systems, such linear disturbances may have persistent impacts. We evaluated the surface peatland structure of five abandoned tracks (four with a mesh surface, one unsurfaced) with varying past usage frequencies, at an upland site in northern England. Simplification of the surface nanotopography was found on all tracks compared to surrounding control areas, with increased micro-erosion patterns in rutted areas, and invasive species on some treatments. The frequency of previous usage was not found to be a significant factor controlling nano-topographic loss. Edge effects and hillslope position were influential in places, but these effects were not consistent across treatments. Nano-topographic recovery was found to be inhibited when track usage commenced within a short time frame after track construction. Mesh tracks appear to create a spatial constraint leading to poor development of plants and a reduced ability to form characteristic structures which are integral to mire function.


Assuntos
Solo , Áreas Alagadas , Inglaterra
15.
Brain Commun ; 4(5): fcac251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267329

RESUMO

Optic neuropathies are characterized by degeneration of retinal ganglion cell axonal projections to the brain, including acute conditions like optic nerve trauma and progressive conditions such as glaucoma. Despite different aetiologies, retinal ganglion cell axon degeneration in traumatic optic neuropathy and glaucoma share common pathological signatures. We compared how early pathogenesis of optic nerve trauma and glaucoma influence axon function in the mouse optic projection. We assessed pathology by measuring anterograde axonal transport from retina to superior colliculus, current-evoked optic nerve compound action potential and retinal ganglion cell density 1 week following unilateral optic nerve crush or intraocular pressure elevation. Nerve crush reduced axon transport, compound axon potential and retinal ganglion cell density, which were unaffected by intraocular pressure elevation. Surprisingly, optic nerves contralateral to crush demonstrated 5-fold enhanced excitability in compound action potential compared with naïve nerves. Enhanced excitability in contralateral sham nerves is not due to increased accumulation of voltage-gated sodium channel 1.6, or ectopic voltage-gated sodium channel 1.2 expression within nodes of Ranvier. Our results indicate hyperexcitability is driven by intrinsic responses of αON-sustained retinal ganglion cells. We found αON-sustained retinal ganglion cells in contralateral, sham and eyes demonstrated increased responses to depolarizing currents compared with those from naïve eyes, while light-driven responses remained intact. Dendritic arbours of αON-sustained retinal ganglion cells of the sham eye were like naïve, but soma area and non-phosphorylated neurofilament H increased. Current- and light-evoked responses of sham αOFF-sustained retinal ganglion cells remained stable along with somato-dendritic morphologies. In retinas directly affected by crush, light responses of αON- and αOFF-sustained retinal ganglion cells diminished compared with naïve cells along with decreased dendritic field area or branch points. Like light responses, αOFF-sustained retinal ganglion cell current-evoked responses diminished, but surprisingly, αON-sustained retinal ganglion cell responses were similar to those from naïve retinas. Optic nerve crush reduced dendritic length and area in αON-sustained retinal ganglion cells in eyes ipsilateral to injury, while crush significantly reduced dendritic branching in αOFF-sustained retinal ganglion cells. Interestingly, 1 week of intraocular pressure elevation only affected αOFF-sustained retinal ganglion cell physiology, depolarizing resting membrane potential in cells of affected eyes and blunting current-evoked responses in cells of saline-injected eyes. Collectively, our results suggest that neither saline nor sham surgery provide a true control, chronic versus acute optic neuropathies differentially affect retinal ganglion cells composing the ON and OFF pathways, and acute stress can have near-term effects on the contralateral projection.

16.
Sci Total Environ ; 852: 158358, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049686

RESUMO

Conventional arable cropping with annual crops established by ploughing and harrowing degrades larger soil aggregates that contribute to storing soil organic carbon (SOC). The urgent need to increase SOC content of arable soils to improve their functioning and sequester atmospheric CO2 has motivated studies into the effects of reintroducing leys into long-term conventional arable fields. However, effects of short-term leys on total SOC accumulation have been equivocal. As soil aggregation may be important for carbon storage, we investigated the effects of arable-to-ley conversion on cambisol soil after three years of ley, on concentrations and stocks of SOC, nitrogen and their distributions in different sized water-stable aggregates. These values were benchmarked against soil from beneath hedgerow margins. SOC stocks (0-7 cm depth) rose from 20.3 to 22.6 Mg ha-1 in the arable-to-ley conversion, compared to 30 Mg ha-1 in hedgerows, but this 2.3 Mg ha-1 difference (or 0.77 Mg C ha-1 yr-1) was not significant). However, the proportion of large macroaggregates (> 2000 µm) increased 5.4-fold in the arable-to-ley conversion, recovering to similar abundance as hedgerow soils, driving near parallel increases in SOC and nitrogen within large macroaggregates (5.1 and 5.7-fold respectively). The total SOC (0-7 cm depth) stored in large macroaggregates increased from 2.0 to 9.6 Mg ha-1 in the arable-to-ley conversion, which no longer differed significantly from the 12.1 Mg ha-1 under hedgerows. The carbon therefore accumulated three times faster, at 2.53 Mg C ha-1 yr-1, in the large macroaggregates compared to the bulk soil. These findings highlight the value of monitoring large macroaggregate-bound SOC as a key early indicator of shifts in soil quality in response to change in field management, and the benefits of leys in soil aggregation, carbon accumulation, and soil functioning, providing justification for fiscal incentives that encourage wider use of leys in arable rotations.


Assuntos
Solo , Trifolium , Carbono , Nitrogênio , Sequestro de Carbono , Poaceae , Medicago , Dióxido de Carbono , Agricultura , Água
17.
Anal Chem ; 94(36): 12297-12304, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36018813

RESUMO

Dynamic observation of cell and tissue responses to elevated pressure could help our understanding of important physiological and pathological processes related to pressure-induced injury. Here, we report on a microfluidic platform capable of maintaining a wide range of stable operating pressures (30 to 200 mmHg) while using a low flowrate (2-14 µL/h) to limit shear stress. This is achieved by forcing flow through a porous resistance matrix composed of agarose gel downstream of a microfluidic chamber. The flow characteristics were investigated and the permeabilities of the agarose with four different concentrations were extracted, agreeing well with results found in the literature. To demonstrate the capability of the device, we measured the change in intracellular Ca2+ levels of retinal ganglion cells in whole mouse retina in response to pressure. The onset of enhanced pressure results in, on average, an immediate 119.16% increase in the intracellular Ca2+ levels of retinal ganglion cells. The demonstrated microfluidic platform could be widely used to probe cell and tissue responses to elevated pressure.


Assuntos
Microfluídica , Retina , Animais , Camundongos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Sefarose , Estresse Mecânico
18.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328488

RESUMO

The nitric oxide-guanylyl cyclase-1-cyclic guanylate monophosphate (NO-GC-1-cGMP) pathway is integral to the control of vascular tone and morphology. Mice lacking the alpha catalytic domain of guanylate cyclase (GC1-/-) develop retinal ganglion cell (RGC) degeneration with age, with only modest fluctuations in intraocular pressure (IOP). Increasing the bioavailability of cGMP in GC1-/- mice prevents neurodegeneration independently of IOP, suggesting alternative mechanisms of retinal neurodegeneration. In continuation to these studies, we explored the hypothesis that dysfunctional cGMP signaling leads to changes in the neurovascular unit that may contribute to RGC degeneration. We assessed retinal vasculature and astrocyte morphology in young and aged GC1-/- and wild type mice. GC1-/- mice exhibit increased peripheral retinal vessel dilation and shorter retinal vessel branching with increasing age compared to Wt mice. Astrocyte cell morphology is aberrant, and glial fibrillary acidic protein (GFAP) density is increased in young and aged GC1-/- mice, with areas of dense astrocyte matting around blood vessels. Our results suggest that proper cGMP signaling is essential to retinal vessel morphology with increasing age. Vascular changed are preceded by alterations in astrocyte morphology which may together contribute to retinal neurodegeneration and loss of visual acuity observed in GC1-/- mice.


Assuntos
Astrócitos , Óxido Nítrico , Animais , Astrócitos/metabolismo , GMP Cíclico/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Transdução de Sinais
19.
Sci Total Environ ; 823: 153674, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124038

RESUMO

Attributing soil erosion to land management and climatic drivers is important for global policy development to protect soils. The Chinese Loess Plateau is one of the most eroded areas in the world. However, there has been limited assessment of historic spatial changes in erosion rates on the Loess Plateau and the major contributors driving these spatial changes. In this study, the Revised Universal Soil Loss Equation was empirically validated and employed to assess spatially distributed historical erosion rates on the Loess Plateau from 1901 to 2016. A double mass curve attribution technique was then used to investigate the impact of land management and climatic drivers on the Loess Plateau. Decadal average erosion rates and the total area with intensive erosion (>5000 t km-2 yr-1) experienced a sharp increase from the 1930s to 1970s, followed by a decline to an historic low between the 1980s and 2000s. Mean erosion rates for the 2000s were 54.3% less than those of the 1970s. However, a recent increase in erosion rates was observed between 2010 and 2016. Land management change was the dominant driver of historical erosion rate changes before 2010. Extensive deforestation and farming, driven by population increase, were responsible for intensifying erosion between the 1930s and 1970s, while policy-driven conservation schemes and revegetation led to reduction thereafter. However, the recent increase in erosion between 2010 and 2016 was mainly driven by extreme rainfall events, a major concern given climate change projections. Advanced erosion control strategies are therefore required as part of integrated catchment management that both maintain water supplies for human use during dry periods while reducing erosion during storm events.


Assuntos
Conservação dos Recursos Naturais , Erosão do Solo , Agricultura , China , Mudança Climática , Humanos , Solo
20.
Sci Total Environ ; 789: 147880, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058593

RESUMO

Managing soil to support biodiversity is important to sustain the ecosystem services provided by soils upon which society depends. There is increasing evidence that functional diversity of soil biota is important for ecosystem services, and has been degraded by intensive agriculture. Importantly, the spatial distribution of reservoirs of soil biota in and surrounding arable fields is poorly understood. In a field experiment, grass-clover ley strips were introduced into four arable fields which had been under continuous intensive/conventional arable rotation for more than 10 years. Earthworm communities in arable fields and newly established grass-clover leys, as well as field boundary land uses (hedgerows and grassy field margins), were monitored over 2 years after arable-to-ley conversions. Within 2 years, earthworm abundance in new leys was 732 ± 244 earthworms m-2, similar to that in field margin soils (619 ± 355 earthworms m-2 yr-1) and four times higher than in adjacent arable soil (185 ± 132 earthworms m-2). Relative to the arable soils, earthworm abundance under the new leys showed changes in community composition, structure and functional group, which were particularly associated with an increase in anecic earthworms; thus new leys became more similar to grassy field margins. Earthworm abundance was similar in new leys that were either connected to biodiversity reservoirs i.e. field margins and hedgerows, or not (installed earthworm barriers). This suggests that, for earthworm communities in typical arable fields, biodiversity reservoirs in adjacent field margins and hedgerows may not be critical for earthworm populations to increase. We conclude that the increase in earthworm abundance in the new leys observed over 2 years was driven by recruitment from the existing residual population in arable soils. Therefore, arable soils are also potential reservoirs of biodiversity.


Assuntos
Oligoquetos , Agricultura , Animais , Biodiversidade , Ecossistema , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA