Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(50): 18316-18325, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38049117

RESUMO

Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.


Assuntos
Radical Hidroxila , Proteínas , Ácido Edético/química , Radical Hidroxila/química , Proteínas/análise , Pegadas de Proteínas/métodos , Estresse Oxidativo , Oxirredução
2.
Nat Commun ; 12(1): 714, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514705

RESUMO

Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin. Here, we present two cryo-EM structures of PRC2:EZH1, one as a monomer and a second one as a dimer bound to a nucleosome. When bound to nucleosome substrate, the PRC2:EZH1 dimer undergoes a dramatic conformational change. We demonstrate that mutation of a divergent EZH1/2 loop abrogates the nucleosome-binding and methyltransferase activities of PRC2:EZH1. Finally, we show that PRC2:EZH1 dimers are more effective than monomers at promoting chromatin compaction, and the divergent EZH1/2 loop is essential for this function, thereby tying together the methyltransferase, nucleosome-binding, and chromatin-compaction activities of PRC2:EZH1. We speculate that the conformational flexibility and the ability to dimerize enable PRC2 to act on the varied chromatin substrates it encounters in the cell.


Assuntos
Cromatina/metabolismo , Inativação Gênica , Complexo Repressor Polycomb 2/ultraestrutura , Animais , Linhagem Celular , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Mutação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Multimerização Proteica , Células Sf9 , Spodoptera , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
Mol Cell ; 70(3): 435-448.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681498

RESUMO

The maintenance of gene expression patterns during metazoan development is achieved, in part, by the actions of polycomb repressive complex 2 (PRC2). PRC2 catalyzes mono-, di-, and trimethylation of histone H3 at lysine 27 (H3K27), with H3K27me2/3 being strongly associated with silenced genes. We demonstrate that EZH1 and EZH2, the two mutually exclusive catalytic subunits of PRC2, are differentially activated by various mechanisms. Whereas both PRC2-EZH1 and PRC2-EZH2 are able to catalyze mono- and dimethylation, only PRC2-EZH2 is strongly activated by allosteric modulators and specific chromatin substrates to catalyze trimethylation of H3K27 in mouse embryonic stem cells (mESCs). However, we also show that a PRC2-associated protein, AEBP2, can stimulate the activity of both complexes through a mechanism independent of and additive to allosteric activation. These results have strong implications regarding the cellular requirements for and the accompanying adjustments in PRC2 activity, given the differential expression of EZH1 and EZH2 upon cellular differentiation.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , Animais , Catálise , Linhagem Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA