Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1399741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572475

RESUMO

[This corrects the article DOI: 10.3389/fendo.2023.1221520.].

2.
Obesity (Silver Spring) ; 32(2): 339-351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086768

RESUMO

OBJECTIVE: By exposing mice carrying a deletion of NADPH oxidase isoform 4, NOX4, specifically in pancreatic ß cells (ßNOX4-/-) to nutrient excess stimulated by a high-fat diet (HFD), this study aimed to elucidate the role of ß-cell redox status in the development of meta-inflammation within the diabetic phenotype. METHODS: The authors performed basic phenotyping of ßNOX4-/- mice on HFD involving insulin and glycemic analyses, histochemistry of adipocytes, indirect calorimetry, and cytokine analyses. To characterize local inflammation, the study used caspase-1 activity assay, interleukin-1ß immunochemistry, and real-time polymerase chain reaction during coculturing of ß cells with macrophages. RESULTS: The phenotype of ßNOX4-/- mice on HFD was not associated with hyperinsulinemia and hyperglycemia but showed accumulation of excessive lipids in epididymal fat and ß cells. Surprisingly, mice showed significantly reduced systemic inflammation. Decreased interleukin-1ß protein levels and downregulated NLRP3-inflammasome activity were observed on chronic glucose overload in ßNOX4-/- isolated islets and NOX4-silenced INS1-E cells resulting in attenuated proinflammatory polarization of macrophages/monocytes in vitro and in situ and reduced local islet inflammation. CONCLUSIONS: Experimental evidence suggests that NOX4 pro-oxidant activity in ß cells is involved in NLRP3-inflammasome activation during chronic nutrient overload and participates in local inflammatory signaling and perhaps toward peripheral tissues, contributing to a diabetic inflammatory phenotype.


Assuntos
Diabetes Mellitus , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1221520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455926

RESUMO

Cysteine is one of the least abundant but most conserved amino acid residues in proteins, playing a role in their structure, metal binding, catalysis, and redox chemistry. Thiols present in cysteines can be modified by post-translational modifications like sulfenylation, acylation, or glutathionylation, regulating protein activity and function and serving as signals. Their modification depends on their position in the structure, surrounding amino acids, solvent accessibility, pH, etc. The most studied modifications are the redox modifications by reactive oxygen, nitrogen, and sulfur species, leading to reversible changes that serve as cell signals or irreversible changes indicating oxidative stress and cell damage. Selected antioxidants undergoing reversible oxidative modifications like peroxiredoxin-thioredoxin system are involved in a redox-relay signaling that can propagate to target proteins. Cysteine thiols can also be modified by acyl moieties' addition (derived from lipid metabolism), resulting in protein functional modification or changes in protein anchoring in the membrane. In this review, we update the current knowledge on cysteine modifications and their consequences in pancreatic ß-cells. Because ß-cells exhibit well-balanced redox homeostasis, the redox modifications of cysteines here serve primarily for signaling purposes. Similarly, lipid metabolism provides regulatory intermediates that have been shown to be necessary in addition to redox modifications for proper ß-cell function and, in particular, for efficient insulin secretion. On the contrary, the excess of reactive oxygen, nitrogen, and sulfur species and the imbalance of lipids under pathological conditions cause irreversible changes and contribute to oxidative stress leading to cell failure and the development of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Cisteína/química , Células Secretoras de Insulina/metabolismo , Compostos de Sulfidrila/metabolismo , Transdução de Sinais , Oxigênio
4.
Antioxid Redox Signal ; 39(10-12): 635-683, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36793196

RESUMO

Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.


Assuntos
Membranas Mitocondriais , Superóxidos , Membranas Mitocondriais/metabolismo , Superóxidos/metabolismo , Homeostase , Oxirredução , Trifosfato de Adenosina/metabolismo , Proteínas Mitocondriais/metabolismo
5.
ACS Appl Mater Interfaces ; 14(16): 18233-18247, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416039

RESUMO

Novel Yb,Tb,Nd-doped GdF3 and NaGdF4 nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) in the presence of the poly(4-styrenesulfonic acid-co-maleic anhydride) stabilizer. The particle size and morphology, crystal structure, and phase change were controlled by adjusting the PSSMA concentration and source of fluoride anions in the reaction. Doping of Yb3+, Tb3+, and Nd3+ ions in the NaGdF4 host nanoparticles induced luminescence under ultraviolet and near-infrared excitation and high relaxivity in magnetic resonance (MR) imaging (MRI). In vitro toxicity of the nanoparticles and their cellular uptake efficiency were determined in model rat pancreatic ß-cells (INS-1E). As the NaGdF4:Yb,Tb,Nd@PSSMA-EG nanoparticles were non-toxic and possessed good luminescence and magnetic properties, they were applicable for in vitro optical and MRI of isolated pancreatic islets in phantoms. The superior contrast was achieved for in vivo T2*-weighted MR images of the islets transplanted under the kidney capsule to mice in preclinical trials.


Assuntos
Ilhotas Pancreáticas , Nanopartículas , Animais , Ilhotas Pancreáticas/diagnóstico por imagem , Luminescência , Imageamento por Ressonância Magnética/métodos , Anidridos Maleicos , Camundongos , Nanopartículas/química , Ratos
6.
Antioxidants (Basel) ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35204081

RESUMO

Mitochondrial Ca2+-independent phospholipase A2γ (iPLA2γ/PNPLA8) was previously shown to be directly activated by H2O2 and release free fatty acids (FAs) for FA-dependent H+ transport mediated by the adenine nucleotide translocase (ANT) or uncoupling protein 2 (UCP2). The resulting mild mitochondrial uncoupling and consequent partial attenuation of mitochondrial superoxide production lead to an antioxidant effect. However, the antioxidant role of iPLA2γ in the brain is not completely understood. Here, using wild-type and iPLA2γ-KO mice, we demonstrate the ability of tert-butylhydroperoxide (TBHP) to activate iPLA2γ in isolated brain mitochondria, with consequent liberation of FAs and lysophospholipids. The liberated FA caused an increase in respiratory rate, which was fully inhibited by carboxyatractyloside (CATR), a specific inhibitor of ANT. Employing detailed lipidomic analysis, we also demonstrate a typical cleavage pattern for TBHP-activated iPLA2γ, reflecting cleavage of glycerophospholipids from both sn-1 and sn-2 positions releasing saturated FAs, monoenoic FAs, and predominant polyunsaturated FAs. The acute antioxidant role of iPLA2γ-released FAs is supported by monitoring both intramitochondrial superoxide and extramitochondrial H2O2 release. We also show that iPLA2γ-KO mice were more sensitive to stimulation by pro-inflammatory lipopolysaccharide, as reflected by the concomitant increase in protein carbonyls in the brain and pro-inflammatory IL-6 release in the serum. These data support the antioxidant and anti-inflammatory role of iPLA2γ in vivo. Our data also reveal a substantial decrease of several high molecular weight cardiolipin (CL) species and accumulation of low molecular weight CL species in brain mitochondria of iPLA2γ-KO mice. Collectively, our results support a key role of iPLA2γ in the remodeling of lower molecular weight immature cardiolipins with predominantly saturated acyl chains to high molecular weight mature cardiolipins with highly unsaturated PUFA acyl chains, typical for the brain.

7.
Antioxid Redox Signal ; 36(13-15): 920-952, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34180254

RESUMO

Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub ß-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Secretagogos/metabolismo
8.
Antioxidants (Basel) ; 10(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801681

RESUMO

Redox status is a key determinant in the fate of ß-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. ß-cells require proper redox signaling already in cell ontogenesis during the development of mature ß-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional ß-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of ß-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged ß-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact ß-cell redox homeostasis and establish prooxidative metabolism. This can further affect ß-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target ß-cells leading to their dedifferentiation, dysfunction and eventually cell death.

9.
Antioxidants (Basel) ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926059

RESUMO

Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA ß-oxidation in pancreatic ß-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.

10.
Antioxidants (Basel) ; 10(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572903

RESUMO

Pancreatic ß-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA ß-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.

11.
Food Funct ; 11(11): 9764-9775, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33078809

RESUMO

n-3 polyunsaturated fatty acids (PUFA) can exert beneficial effects on glucose homeostasis, especially in obese rodents. Gut incretin hormones regulate glucose and lipid homeostasis, but their involvement in the above effects is not entirely clear. This study aims to assess the effects of chronic n-3 PUFA administration on the insulin and incretin responses in C57BL/6N obese male mice subjected to oral glucose tolerance test (oGTT) after 8 weeks of feeding a corn-oil-based high-fat diet (cHF). The weight gain and adiposity were partially reduced in mice fed cHF in which some of the corn oil was replaced with n-3 PUFA concentrate containing ∼60% DHA and EPA in a 3 : 1 ratio. In addition, these mice had improved glucose tolerance, which was consistent with an increased insulin response to oral glucose and plasma glucagon-like peptide-1 (GLP-1) levels. While the stimulatory effects of n-3 PUFA on GLP-1 levels could not be attributed to changes in intestinal or plasma dipeptidyl peptidase-4 activity, their beneficial effects on glucose tolerance were abolished when mice were pretreated with the GLP-1 receptor antagonist exendin 9-39. Moreover, chronic n-3 PUFA intake prevented the detrimental effects of cHF feeding on glucose-stimulated insulin secretion in the pancreatic islets. Collectively, our data suggest that n-3 PUFA may modulate postprandial glucose metabolism in obese mice through a GLP-1-based mechanism. The significance of these findings in terms of the effective DHA and EPA ratio of the n-3 PUFA concentrate as well as the effect of n-3 PUFA in humans requires further research.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Insulina/metabolismo , Administração Oral , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Biomolecules ; 10(7)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664368

RESUMO

Transcript levels for selected ATP synthase membrane FO-subunits-including DAPIT-in INS-1E cells were found to be sensitive to lowering glucose down from 11 mM, in which these cells are routinely cultured. Depending on conditions, the diminished mRNA levels recovered when glucose was restored to 11 mM; or were elevated during further 120 min incubations with 20-mM glucose. Asking whether DAPIT expression may be elevated by hyperglycemia in vivo, we studied mice with hyaluronic acid implants delivering glucose for up to 14 days. Such continuous two-week glucose stimulations in mice increased DAPIT mRNA by >5-fold in isolated pancreatic islets (ATP synthase F1α mRNA by 1.5-fold). In INS-1E cells, the glucose-induced ATP increment vanished with DAPIT silencing (6% of ATP rise), likewise a portion of the mtDNA-copy number increment. With 20 and 11-mM glucose the phosphorylating/non-phosphorylating respiration rate ratio diminished to ~70% and 96%, respectively, upon DAPIT silencing, whereas net GSIS rates accounted for 80% and 90% in USMG5/DAPIT-deficient cells. Consequently, the sufficient DAPIT expression and complete ATP synthase assembly is required for maximum ATP synthesis and mitochondrial biogenesis, but not for insulin secretion as such. Elevated DAPIT expression at high glucose further increases the ATP synthesis efficiency.


Assuntos
Glucose/administração & dosagem , Células Secretoras de Insulina/citologia , Proteínas de Membrana/genética , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Glucose/farmacologia , Ácido Hialurônico/química , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Proteica , Ratos
13.
Antioxid Redox Signal ; 33(12): 789-815, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32517485

RESUMO

Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic ß cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic ß cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic ß cells.


Assuntos
Glucose/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Superóxidos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Cromatografia Líquida , Ácido Cítrico/metabolismo , Metabolismo Energético , Flavina-Adenina Dinucleotídeo/metabolismo , Peróxido de Hidrogênio/metabolismo , Espectrometria de Massas , Potencial da Membrana Mitocondrial , Redes e Vias Metabólicas , Metabolômica/métodos , Ratos , Transdução de Sinais
14.
Sci Rep ; 10(1): 8677, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457458

RESUMO

Wild type mitochondrial isocitrate dehydrogenase (IDH2) was previously reported to produce oncometabolite 2-hydroxyglutarate (2HG). Besides, mitochondrial deacetylase SIRT3 has been shown to regulate the oxidative function of IDH2. However, regulation of 2HG formation by SIRT3-mediated deacetylation was not investigated yet. We aimed to study mitochondrial IDH2 function in response to acetylation and deacetylation, and focus specifically on 2HG production by IDH2. We used acetylation surrogate mutant of IDH2 K413Q and assayed enzyme kinetics of oxidative decarboxylation of isocitrate, 2HG production by the enzyme, and 2HG production in cells. The purified IDH2 K413Q exhibited lower oxidative reaction rates than IDH2 WT. 2HG production by IDH2 K413Q was largely diminished at the enzymatic and cellular level, and knockdown of SIRT3 also inhibited 2HG production by IDH2. Contrary, the expression of putative mitochondrial acetylase GCN5L likely does not target IDH2. Using mass spectroscopy, we further identified lysine residues within IDH2, which are the substrates of SIRT3. In summary, we demonstrate that 2HG levels arise from non-mutant IDH2 reductive function and decrease with increasing acetylation level. The newly identified lysine residues might apply in regulation of IDH2 function in response to metabolic perturbations occurring in cancer cells, such as glucose-free conditions.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 3/metabolismo , Acetilação , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Isocitrato Desidrogenase/genética , Isocitratos/química , NADP/metabolismo , Oxirredução
15.
Diabetes ; 69(7): 1341-1354, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32245800

RESUMO

NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islets (PIs) of ß-cells through an as yet unknown mechanism. We found NADPH oxidase isoform 4 (NOX4) to be the main producer of cytosolic H2O2, which is essential for GSIS; an increase in ATP alone was insufficient for GSIS. The fast GSIS phase was absent from PIs from NOX4-null, ß-cell-specific knockout mice (NOX4ßKO) (though not from NOX2 knockout mice) and from NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4ßKO mice. NOX4 silencing suppressed Ca2+ oscillations, and the patch-clamped KATP channel opened more frequently when glucose was high. Mitochondrial H2O2, decreasing upon GSIS, provided alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxides through electron-transfer flavoprotein:Q-oxidoreductase. Unlike GSIS, such insulin secretion was blocked with mitochondrial antioxidant SkQ1. Both NOX4 knockout and NOX4ßKO mice exhibited impaired glucose tolerance and peripheral insulin resistance. Thus, the redox signaling previously suggested to cause ß-cells to self-check hypothetically induces insulin resistance when it is absent. In conclusion, increases in ATP and H2O2 constitute an essential signal that switches on insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (it does so partially for fatty acids). Redox signaling could be impaired by cytosolic antioxidants; hence, those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.


Assuntos
Glucose/farmacologia , Peróxido de Hidrogênio/metabolismo , Secreção de Insulina , NADPH Oxidase 4/fisiologia , Animais , Cálcio/metabolismo , Células Cultivadas , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio/fisiologia , Transdução de Sinais/fisiologia
16.
Biomolecules ; 10(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935965

RESUMO

Progress in mass spectroscopy of posttranslational oxidative modifications has enabled researchers to experimentally verify the concept of redox signaling. We focus here on redox signaling originating from mitochondria under physiological situations, discussing mechanisms of transient redox burst in mitochondria, as well as the possible ways to transfer such redox signals to specific extramitochondrial targets. A role of peroxiredoxins is described which enables redox relay to other targets. Examples of mitochondrial redox signaling are discussed: initiation of hypoxia-inducible factor (HIF) responses; retrograde redox signaling to PGC1α during exercise in skeletal muscle; redox signaling in innate immune cells; redox stimulation of insulin secretion, and other physiological situations.


Assuntos
Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipóxia/metabolismo , Imunidade/fisiologia , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Peroxirredoxinas , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo
17.
Biochim Biophys Acta Bioenerg ; 1860(8): 659-678, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247171

RESUMO

Hypoxia causes mitochondrial cristae widening, enabled by the ~20% degradation of Mic60/mitofilin, with concomitant clustering of the MICOS complex, reflecting the widening of crista junctions (outlets) (Plecitá-Hlavatá et al. FASEB J., 2016 30:1941-1957). Attempting to accelerate metabolism by the addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to HepG2 cells pre-adapted to hypoxia, we found cristae narrowing by transmission electron microscopy. Glycolytic HepG2 cells, which downregulate hypoxic respiration, instantly increased respiration with dm2OG. Changes in intracristal space (ICS) morphology were also revealed by 3D super-resolution microscopy using Eos-conjugated ICS-located lactamase-ß. Cristae topology was resolved in detail by focused-ion beam/scanning electron microscopy (FIB/SEM). The spatial relocations of key cristae-shaping proteins were indicated by immunocytochemical stochastic 3D super-resolution microscopy (dSTORM), while analyzing inter-antibody-distance histograms: i) ATP-synthase dimers exhibited a higher fraction of shorter inter-distances between bound F1-α primary Alexa-Fluor-647-conjugated antibodies, indicating cristae narrowing. ii) Mic60/mitofilin clusters (established upon hypoxia) decayed, restoring isotropic random Mic60/mitofilin distribution (a signature of normoxia). iii) outer membrane SAMM50 formed more focused clusters. Less abundant fractions of higher ATP-synthase oligomers of hypoxic samples on blue-native electrophoresis became more abundant fractions at the high dm2OG load and at normoxia. This indicates more labile ATP-synthase dimeric rows established at crista rims upon hypoxia, strengthened at normoxia or dm2OG-substrate load. Hypothetically, the increased Krebs substrate load stimulates the cross-linking/strengthening of rows of ATP-synthase dimers at the crista rims, making them sharper. Crista narrowing ensures a more efficient coupling of proton pumping to ATP synthesis. We demonstrated that cristae morphology changes even within minutes.


Assuntos
Ácidos Cetoglutáricos/farmacologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Respiração Celular , Dimerização , Células Hep G2 , Humanos , Hipóxia , Microscopia Eletrônica de Transmissão , Membranas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo
18.
Oxid Med Cell Longev ; 2019: 1826303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249641

RESUMO

Pancreatic ß-cells are vulnerable to oxidative stress due to their low content of redox buffers, such as glutathione, but possess a rich content of thioredoxin, peroxiredoxin, and other proteins capable of redox relay, transferring redox signaling. Consequently, it may be predicted that cytosolic antioxidants could interfere with the cytosolic redox signaling and should not be recommended for any potential therapy. In contrast, mitochondrial matrix-targeted antioxidants could prevent the primary oxidative stress arising from the primary superoxide sources within the mitochondrial matrix, such as at the flavin (IF) and ubiquinone (IQ) sites of superoxide formation within respiratory chain complex I and the outer ubiquinone site (IIIQ) of complex III. Therefore, using time-resolved confocal fluorescence monitoring with MitoSOX Red, we investigated various effects of mitochondria-targeted antioxidants in model pancreatic ß-cells (insulinoma INS-1E cells) and pancreatic islets. Both SkQ1 (a mitochondria-targeted plastoquinone) and a suppressor of complex III site Q electron leak (S3QEL) prevented superoxide production released to the mitochondrial matrix in INS-1E cells with stimulatory glucose, where SkQ1 also exhibited an antioxidant role for UCP2-silenced cells. SkQ1 acted similarly at nonstimulatory glucose but not in UCP2-silenced cells. Thus, UCP2 can facilitate the antioxidant mechanism based on SkQ1+ fatty acid anion- pairing. The elevated superoxide formation induced by antimycin A was largely prevented by S3QEL, and that induced by rotenone was decreased by SkQ1 and S3QEL and slightly by S1QEL, acting at complex I site Q. Similar results were obtained with the MitoB probe, for the LC-MS-based assessment of the 4 hr accumulation of reactive oxygen species within the mitochondrial matrix but for isolated pancreatic islets. For 2 hr INS-1E incubations, some samples were influenced by the cell death during the experiment. Due to the frequent dependency of antioxidant effects on metabolic modes, we suggest a potential use of mitochondria-targeted antioxidants for the treatment of prediabetic states after cautious nutrition-controlled tests. Their targeted delivery might eventually attenuate the vicious spiral leading to type 2 diabetes.


Assuntos
Antioxidantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Compostos Organofosforados , Oxirredução , Fenantridinas , Proteína Desacopladora 2/metabolismo
19.
Molecules ; 23(6)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921789

RESUMO

Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet ß-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased ß-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by ß-cells, leads to an inevitable failure of pancreatic ß-cells.


Assuntos
Ácidos Graxos/metabolismo , Hiperinsulinismo , Resistência à Insulina , Células Secretoras de Insulina , Insulina/metabolismo , Estresse Oxidativo , Animais , Humanos , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia
20.
Antioxid Redox Signal ; 29(7): 667-714, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351723

RESUMO

SIGNIFICANCE: Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES: A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS: Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.


Assuntos
Antioxidantes/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Transdução de Sinais , Animais , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA