Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Immune Netw ; 24(2): e17, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725672

RESUMO

We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins. To explore the involvement of body mass index (BMI), after these 2 injuries, we examined correlations among DAF, C5b, MAC and BMI. Using these approaches, we found that synovial cells after ACL injury expressed a significantly lower level of DAF as compared to MT (p<0.049). In contrast, C5b staining synovial cells were significantly higher after ACL injury (p<0.0009) and in OA DSST (p<0.039) compared to MT. Interestingly, there were significantly positive correlations between DAF & C5b (r=0.75, p<0.018) and DAF & C5b (r=0.64 p<0.022) after ACL injury and MT, respectively. The data support that DAF, which should normally dampen C5b deposition due to its regulatory activities on C3/C5 convertases, does not appear to exhibit that function in inflamed synovia following either ACL injury or MT. Ineffective DAF regulation may be an additional mechanism by which relatively uncontrolled complement activation damages tissue in these injury states.

2.
iScience ; 27(2): 108769, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303689

RESUMO

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

3.
Arthritis Rheumatol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412870

RESUMO

OBJECTIVE: To investigate immune dysregulation in the peripheral blood that contributes to the pre-rheumatoid arthritis (RA) stage of RA development in anticitrullinated protein antibody (ACPA)+ individuals. METHODS: Using 37 markers by mass cytometry, we investigated peripheral blood mononuclear cells (PBMCs) from ACPA+ at-risk individuals, ACPA+ early untreated patients with RA, and ACPA- controls in the Tokyo Women's Medical University cohort (n = 17 in each group). Computational algorithms, FlowSOM and Optimized t-Distributed Stochastic Neighbor Embedding, were employed to explore specific immunologic differences between study groups. These findings were further evaluated, and longitudinal changes were explored, using flow cytometry and PBMCs from the US-based Targeting Immune Responses for Prevention of RA cohort that included 11 ACPA+ individuals who later developed RA (pre-RA), of which 9 had post-RA diagnosis PBMCs (post-RA), and 11 ACPA- controls. RESULTS: HLA-DR+ peripheral helper T (Tph) cells, activated regulatory T cells, PD-1hi CD8+ T cells, and CXCR5-CD11c-CD38+ naive B cells were significantly expanded in PBMCs from at-risk individuals and patients with early RA from the Tokyo Women's Medical University cohort. Expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells was likewise found in both pre-RA and post-RA time points in the Targeting Immune Responses for Prevention of RA cohort. CONCLUSION: The expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells in ACPA+ individuals, including those who developed inflammatory arthritis and classified RA, supports a key role of these cells in transition from pre-RA to classified RA. These findings may identify a new mechanistic target for treatment and prevention in RA.

4.
Mol Ther ; 32(4): 1061-1079, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38382529

RESUMO

Complement-mediated diseases can be treated using systemic inhibitors. However, complement components are abundant in circulation, affecting systemic inhibitors' exposure and efficacy. Furthermore, because of complement's essential role in immunity, systemic treatments raise infection risk in patients. To address these challenges, we developed antibody fusion proteins combining the alternative-pathway complement inhibitor factor H (fH1-5) with an anti-C3d monoclonal antibody (C3d-mAb-2fH). Because C3d is deposited at sites of complement activity, this molecule localizes to tissue complement while minimizing circulating complement engagement. These fusion proteins bind to deposited complement in diseased human skin sections and localize to activated complement in a primate skin injury model. We further explored the pharmacology of C3d-mAb-2fH proteins in rodent models with robust tissue complement activation. Doses of C3d-mAb-2fH >1 mg/kg achieved >75% tissue complement inhibition in mouse and rat injury models while avoiding circulating complement blockade. Glomerular-specific complement inhibition reduced proteinuria and preserved podocyte foot-process architecture in rat membranous nephropathy, indicating disease-modifying efficacy. These data indicate that targeting local tissue complement results in durable and efficacious complement blockade in skin and kidney while avoiding systemic inhibition, suggesting broad applicability of this approach in treating a range of complement-mediated diseases.


Assuntos
Fator H do Complemento , Nefropatias , Humanos , Camundongos , Ratos , Animais , Fator H do Complemento/genética , Complemento C3d/metabolismo , Nefropatias/etiologia , Anticorpos , Ativação do Complemento
5.
Arthritis Rheumatol ; 76(3): 356-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37791989

RESUMO

OBJECTIVE: Recent studies have uncovered diverse cell types and states in the rheumatoid arthritis (RA) synovium; however, limited data exist correlating these findings with patient-level clinical information. Using the largest cohort to date with clinical and multicell data, we determined associations between RA clinical factors with cell types and states in the RA synovium. METHODS: The Accelerated Medicines Partnership Rheumatoid Arthritis study recruited patients with active RA who were not receiving disease-modifying antirheumatic drugs (DMARDs) or who had an inadequate response to methotrexate (MTX) or tumor necrosis factor inhibitors. RA clinical factors were systematically collected. Biopsies were performed on an inflamed joint, and tissue were disaggregated and processed with a cellular indexing of transcriptomes and epitopes sequencing pipeline from which the following cell type percentages and cell type abundance phenotypes (CTAPs) were derived: endothelial, fibroblast, and myeloid (EFM); fibroblasts; myeloid; T and B cells; T cells and fibroblasts (TF); and T and myeloid cells. Correlations were measured between RA clinical factors, cell type percentage, and CTAPs. RESULTS: We studied 72 patients (mean age 57 years, 75% women, 83% seropositive, mean RA duration 6.6 years, mean Disease Activity Score-28 C-reactive Protein 3 [DAS28-CRP3] score 4.8). Higher DAS28-CRP3 correlated with a higher T cell percentage (P < 0.01). Those receiving MTX and not a biologic DMARD (bDMARD) had a higher percentage of B cells versus those receiving no DMARDs (P < 0.01). Most of those receiving bDMARDs were categorized as EFM (57%), whereas none were TF. No significant difference was observed across CTAPs for age, sex, RA disease duration, or DAS28-CRP3. CONCLUSION: In this comprehensive screen of clinical factors, we observed differential associations between DMARDs and cell phenotypes, suggesting that RA therapies, more than other clinical factors, may impact cell type/state in the synovium and ultimately influence response to subsequent therapies.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Antirreumáticos/uso terapêutico , Metotrexato/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Membrana Sinovial , Fator Reumatoide
6.
Diabetes Metab Res Rev ; 40(1): e3716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649398

RESUMO

Type 1 diabetes is an autoimmune disease in which one's own immune system destroys insulin-secreting beta cells in the pancreas. This process results in life-long dependence on exogenous insulin for survival. Both genetic and environmental factors play a role in disease initiation, progression, and ultimate clinical diagnosis of type 1 diabetes. This review will provide background on the natural history of type 1 diabetes and the role of genetic factors involved in the complement system, as several recent studies have identified changes in levels of these proteins as the disease evolves from pre-clinical through to clinically apparent disease.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/genética , Pâncreas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo
7.
Semin Arthritis Rheum ; 64S: 152324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030540

RESUMO

BACKGROUND: The causal pathways which drive the development of seropositive rheumatoid arthritis (RA) are incompletely understood, especially in the period of time prior to the first development of signs and symptoms of joint involvement. That asymptomatic period, designated herein as pre-RA, is characterized by the presence of RA-related autoantibodies for many years and is the subject of an increasing number of studies as well as a focus of efforts to prevent the onset of clinically apparent arthritis. OBJECTIVES: To review the potential causal pathways in pre-RA by examining results of studies which evaluate the systemic peripheral blood and mucosal alterations that have been identified in individuals who are genetically at-risk, and/or who elaborate RA-related autoantibodies, and are defined as in a pre-RA period. METHODS: Published studies by the author and his colleagues, as well as publications by other groups, which describe the presence of biomarkers at mucosal sites and in the blood were reviewed. From these studies, a hypothesis related to the presence of pre-RA causal drivers was constructed. RESULTS: The author and his colleagues, as well as other groups, have shown that there are multiple mucosal sites, primarily gut, lung and oral/peridontial, which appear in subsets of individuals in the pre-RA to exhibit inflammation and/or the presence of local production of IgA and IgG RA-related autoantibodies, including anti-citrullinated protein antibodies (ACPA). These findings are reviewed herein. There remain a large number of unanswered questions, though, related to the immune mechanisms that are operative at each site, as well as how these local findings evolve to causal systemic autoimmunity and eventually inflammatory arthritis. AUTHOR'S CONCLUSIONS: Comprehensive natural history studies are required to understand how multiple mucosal sites which appear to be involved in pre-RA are causally involved in the development of arthritis. Questions remain as to whether there are independent, serially involved, or inter-related causal immune pathways originating from these sites. In addition, the microbiota which may be involved in local immune inflammation and autoantibody production should be identified and characterized.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/diagnóstico , Autoanticorpos , Inflamação , Anticorpos Antiproteína Citrulinada , Mucosa
8.
Nat Nanotechnol ; 19(2): 246-254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798566

RESUMO

Effective inhibition of the complement system is needed to prevent the accelerated clearance of nanomaterials by complement cascade and inflammatory responses. Here we show that a fusion construct consisting of human complement receptor 2 (CR2) (which recognizes nanosurface-deposited complement 3 (C3)) and complement receptor 1 (CR1) (which blocks C3 convertases) inhibits complement activation with picomolar to low nanomolar efficacy on many types of nanomaterial. We demonstrate that only a small percentage of nanoparticles are randomly opsonized with C3 both in vitro and in vivo, and CR2-CR1 immediately homes in on this subpopulation. Despite rapid in vivo clearance, the co-injection of CR2-CR1 in rats, or its mouse orthologue CR2-Crry in mice, with superparamagnetic iron oxide nanoparticles nearly completely blocks complement opsonization and unwanted granulocyte/monocyte uptake. Furthermore, the inhibitor completely prevents lethargy caused by bolus-injected nanoparticles, without inducing long-lasting complement suppression. These findings suggest the potential of the targeted complement regulators for clinical evaluation.


Assuntos
Nanopartículas , Receptores de Complemento 3d , Ratos , Camundongos , Humanos , Animais , Receptores de Complemento 3b , Ativação do Complemento , Complemento C3 , Proteínas Recombinantes de Fusão
9.
Nat Commun ; 14(1): 7637, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993439

RESUMO

Molecular markers of autoimmunity, such as antibodies to citrullinated protein antigens (ACPA), are detectable prior to inflammatory arthritis (IA) in rheumatoid arthritis (RA) and may define a state that is 'at-risk' for future RA. Here we present a cross-sectional comparative analysis among three groups that include ACPA positive individuals without IA (At-Risk), ACPA negative individuals and individuals with early, ACPA positive clinical RA (Early RA). Differential methylation analysis among the groups identifies non-specific dysregulation in peripheral B, memory and naïve T cells in At-Risk participants, with more specific immunological pathway abnormalities in Early RA. Tetramer studies show increased abundance of T cells recognizing citrullinated (cit) epitopes in At-Risk participants, including expansion of T cells reactive to citrullinated cartilage intermediate layer protein I (cit-CILP); these T cells have Th1, Th17, and T stem cell memory-like phenotypes. Antibody-antigen array analyses show that antibodies targeting cit-clusterin, cit-fibrinogen and cit-histone H4 are elevated in At-Risk and Early RA participants, with the highest levels of antibodies detected in those with Early RA. These findings indicate that an ACPA positive at-risk state is associated with multifaceted immune dysregulation that may represent a potential opportunity for targeted intervention.


Assuntos
Artrite Reumatoide , Autoanticorpos , Humanos , Estudos Transversais , Epitopos
10.
Nature ; 623(7987): 616-624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938773

RESUMO

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Citocinas/metabolismo , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Membrana Sinovial/patologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Predisposição Genética para Doença/genética , Fenótipo , Análise da Expressão Gênica de Célula Única
12.
Clin Proteomics ; 20(1): 38, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735622

RESUMO

BACKGROUND: Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic ß cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. METHODS: This systematic review was registered with Open Science Framework ( https://doi.org/10.17605/OSF.IO/N8TSA ). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. RESULTS: A total of 13 studies met our inclusion criteria, resulting in the identification of 266 unique proteins, with 31 (11.6%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found 2 subsets: 17 proteins (C3, C1R, C8G, C4B, IBP2, IBP3, ITIH1, ITIH2, BTD, APOE, TETN, C1S, C6A3, SAA4, ALS, SEPP1 and PI16) and 3 proteins (C3, CLUS and C4A) have consistent regulation in at least 2 independent studies at post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. CONCLUSIONS: Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.

13.
Res Sq ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37720032

RESUMO

Previous studies have identified significant alterations in intestinal carnitine metabolism in mice with collagen-induced arthritis (CIA), potentially linking bacterial dysbiosis with autoimmunity. Bacterial trimethylamine (TMA) lyases metabolize dietary carnitine to TMA, which is oxidized in the liver to trimethylamine-N-oxide (TMAO). TMAO is associated with inflammatory diseases, such as atherosclerosis, whose immunologic processes mirror that of rheumatoid arthritis (RA). Therefore, we investigated the possibility of ameliorating CIA by inhibiting TMA lyase activity using 3,3-dimethyl-1-butanol (DMB) or fluoromethylcholine (FMC). During CIA, mice were treated with 1% vol/vol DMB, 100mg/kg FMC, or vehicle. DMB-treated mice demonstrated significant (>50%) reduction in arthritis severity compared to FMC and vehicle-treated mice. However, in contrast to FMC, DMB treatment did not reduce cecal TMA nor circulating TMAO concentrations. Using gas chromatography, we confirmed the effect of DMB is independent of TMA lyase inhibition. Further, we identified a novel host-derived metabolite of DMB, 3,3-dimethyl-1-butyric acid (DMBut), which also significantly reduced disease and proinflammatory cytokines in CIA mice. Altogether, our study suggests that DMB the immunomodulatory activity of DMB and/or its metabolites are protective in CIA. Elucidating its target and mechanism of action may provide new directions for RA therapeutic development.

14.
J Immunol ; 211(8): 1240-1248, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37682538

RESUMO

B cell-targeted therapies are effective for treating multiple different kidney diseases in humans and also protect mice from Adriamycin nephropathy. Because glomerular IgM is frequently seen in both humans and mice with "nonimmune" forms of glomerular disease, we hypothesized that natural IgM binds to epitopes displayed in the injured glomerulus, exacerbating injury. To test this hypothesis, we induced Adriamycin nephropathy in BALB/C mice that cannot secrete soluble IgM (sIgM-/- mice) and compared them with BALB/C controls. Contrary to our prediction, we found that female sIgM-/- mice developed higher mortality and more severe kidney injury after injection of Adriamycin. The absence of soluble IgM did not reduce glomerular complement activation, and IgG was seen deposited within the injured glomeruli. Furthermore, we discovered that female sIgM-/- mice have higher levels of anti-cardiolipin IgG, and that IgG from these mice binds to epitopes in the injured kidney. These findings indicate that natural IgM may prevent generation of autoreactive IgG. Circulating levels of anti-cardiolipin IgG decreased after induction of kidney injury in female mice, consistent with deposition of the Abs in injured tissues. Better understanding of the mechanisms by which the immune system modulates and amplifies kidney injury may enable the development of targeted therapies to slow kidney disease progression.


Assuntos
Imunoglobulina M , Nefropatias , Animais , Feminino , Camundongos , Doxorrubicina , Epitopos , Imunoglobulina G , Camundongos Endogâmicos BALB C
15.
medRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37502972

RESUMO

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß-cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies - biomarkers of autoimmunity - is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar timeframe. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

16.
Nat Rev Rheumatol ; 19(8): 470-485, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337038

RESUMO

The complement system was described over 100 years ago, and it is well established that activation of this pathway accompanies the great majority of autoimmune and inflammatory diseases. In addition, over three decades of work in murine models of human disease have nearly universally demonstrated that complement activation is upstream of tissue injury and the engagement of pro-inflammatory mechanisms such as the elaboration of cytokines and chemokines, as well as myeloid cell recruitment and activation. With that background, and taking advantage of advances in the development of biologic and small-molecule therapeutics, the creation and clinical evaluation of complement therapeutics is now rapidly expanding. This article reviews the current state of the complement therapeutics field, with a focus on their use in diseases cared for or consulted upon by rheumatologists. Included is an overview of the activation mechanisms and components of the system, in addition to the mechanisms by which the complement system interacts with other immune system constituents. The various therapeutic approaches to modulating the system in rheumatic and autoimmune diseases are reviewed. To understand how best to clinically assess the complement system, methods of its evaluation are described. Finally, next-generation therapeutic and diagnostic advances that can be envisioned for the future are discussed.


Assuntos
Doenças Autoimunes , Reumatologia , Humanos , Animais , Camundongos , Proteínas do Sistema Complemento , Ativação do Complemento , Doenças Autoimunes/tratamento farmacológico
17.
Front Immunol ; 14: 1146563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207197

RESUMO

Anterior cruciate ligament (ACL) injury and meniscal tear (MT) are major causal factors for developing post-traumatic osteoarthritis (PTOA), but the biological mechanism(s) are uncertain. After these structural damages, the synovium could be affected by complement activation that normally occurs in response to tissue injury. We explored the presence of complement proteins, activation products, and immune cells, in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy and from patients with OA. Multiplexed immunohistochemistry (MIHC) was used to determine the presence of complement proteins, receptors and immune cells from ACL, MT, OA synovial tissue vs. uninjured controls. Examination of synovium from uninjured control tissues did not reveal the presence of complement or immune cells. However, DSST from patients undergoing ACL and MT repair demonstrated increases in both features. In ACL DSST, a significantly higher percentage of C4d+, CFH+, CFHR4+ and C5b-9+ synovial cells were present compared with MT DSST, but no major differences were seen between ACL and OA DSST. Increased cells expressing C3aR1 and C5aR1, and a significant increase in mast cells and macrophages, were found in ACL as compared to MT synovium. Conversely, the percentage of monocytes was increased in the MT synovium. Our data demonstrate that complement is activated in the synovium and is associated with immune cell infiltration, with a more pronounced effect following ACL as compared to MT injury. Complement activation, associated with an increase in mast cells and macrophages after ACL injury and/or MT, may contribute to the development of PTOA.


Assuntos
Lesões do Ligamento Cruzado Anterior , Artroplastia do Joelho , Menisco , Osteoartrite do Joelho , Humanos , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/cirurgia , Osteoartrite do Joelho/etiologia , Artroplastia do Joelho/efeitos adversos , Ativação do Complemento , Menisco/cirurgia
18.
medRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865103

RESUMO

Aims: Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic ß cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. Methods: This systematic review was registered with Open Science Framework (DOI 10.17605/OSF.IO/N8TSA). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. Results: A total of 13 studies met our inclusion criteria, resulting in the identification of 251 unique proteins, with 27 (11%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found a subset of 3 proteins (C3, KNG1 & CFAH), 6 proteins (C3, C4A, APOA4, C4B, A2AP & BTD) and 7 proteins (C3, CLUS, APOA4, C6, A2AP, C1R & CFAI) have consistent regulation between multiple studies in samples from individuals at pre-seroconversion, post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. Conclusions: Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.

19.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993527

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B cells, which promote synovial inflammation through a complex set of interactions with innate immune and stromal cells. To better understand the phenotypes and clonal relationships of synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs). Among these cells, Tph cells showed a unique transcriptomic signature of recent T cell receptor (TCR) activation, and clonally expanded Tph cells expressed an elevated transcriptomic effector signature compared to non-expanded Tph cells. CD8 T cells showed higher oligoclonality than CD4 T cells, and the largest CD8 T cell clones in synovium were highly enriched in GZMK+ cells. TCR analyses revealed CD8 T cells with likely viral-reactive TCRs distributed across transcriptomic clusters and definitively identified MAIT cells in synovium, which showed transcriptomic features of TCR activation. Among B cells, non-naive B cells including age-associated B cells (ABC), NR4A1+ activated B cells, and plasma cells, were enriched in synovium and had higher somatic hypermutation rates compared to blood B cells. Synovial B cells demonstrated substantial clonal expansion, with ABC, memory, and activated B cells clonally linked to synovial plasma cells. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate RA synovium.

20.
J Am Soc Nephrol ; 34(7): 1151-1154, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995143

RESUMO

SIGNIFICANCE STATEMENT: Histologic quantification of complement C3 deposits in kidney biopsies provides prognostic information in patients with glomerulonephritis. Unfortunately, kidney biopsies are invasive procedures that cannot be performed regularly and only provide a snapshot of a small portion of one kidney at the time of sampling. We have developed a method to noninvasively detect specific C3 fragment deposition throughout both kidneys, using a monoclonal antibody targeting tissue-bound iC3b/C3d linked to a bioluminescent resonance energy transfer construct that emits near-infrared light. In a mouse model of glomerulonephritis, the probe detected iC3b/C3d in kidneys of live mice by bioluminescent imaging. This demonstrates that noninvasive imaging with an anti-iC3b/C3d probe can be used to monitor inflammation in the kidneys.


Assuntos
Complemento C3b , Glomerulonefrite , Animais , Camundongos , Complemento C3d , Rim/diagnóstico por imagem , Anticorpos Monoclonais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA