RESUMO
Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported the pivotal role of DcKr-h1 in the fecundity improvement of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas), and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In the D. citri-CLas interaction, the expression levels of miR-2 and novel-miR-109 in the ovaries of CLas-positive psyllids were lower compared to CLas-negative individuals. Overexpression of miR-2 or novel-miR-109 significantly decreased fecundity and CLas titer in ovaries and caused reproductive defects reminiscent of DcKr-h1 knockdown. Similarly, in the D. citri-Cf interaction, the levels of miR-2 and novel-miR-109 markedly decreased in the ovaries. Upregulation of miR-2 or novel-miR-109 also resulted in reduced fecundity and ovary defects similar to those caused by DcKr-h1 silencing. Moreover, feeding antagomir-2 or antagomir-109 partially rescued the defective phenotypes caused by DcKr-h1 silencing in both model systems, and miR-2 and novel-miR-109 were repressed by juvenile hormone (JH) and regulated the genes associated with egg development. This study shows a conserved regulatory mechanism, whereby JH suppresses the expression of miR-2 and novel-miR-109 which, together with JH-induced transcription of DcKr-h1, increases female fecundity induced by both symbiotic bacteria and pathogenic fungi. IMPORTANCE: Infection with pathogens can increase the fecundity and other fitness-related traits of insect vectors for their own advantage. Our previous research has reported that DcKr-h1 plays a critical role in the increase in fecundity of Diaphorina citri induced by the bacterium, "Candidatus Liberibacter asiaticus" (CLas) and the fungus, Cordyceps fumosorosea (Cf). However, the posttranscriptional regulation of this process remains poorly understood. Given the significance of miRNAs in gene regulation, we delved into their roles in shaping phenotypes and their underlying molecular mechanisms. Our results indicated that two miRNAs, miR-2 and novel-miR-109, jointly inhibited DcKr-h1 expression by binding to its 3' untranslated region (UTR). In both D. citri-CLas and D. citri-Cf interactions, the increased juvenile hormone (JH) titer and reduced abundance of miR-2 and novel-miR-109 ensure high levels of DcKr-h1 expression, consequently stimulating ovarian development and enhancing fecundity. These observations provide evidence that miR-2 and miR-109 are crucial players in the JH-dependent increase in fecundity in psyllids induced by infection with different pathogens.
RESUMO
Arsenic (As) contamination of agricultural soils poses a serious threat to crop productivity and food safety. Zinc oxide nanoparticles (ZnONPs) have emerged as a potential amendment for mitigating the adverse effects of As stress in plants. Soybean crop is mostly grown on marginalized land and is known for high accumulation of As in roots than others tissue. Therefore, this study aimed to elucidate the underlying mechanisms of ZnONPs in ameliorating arsenic toxicity in soybean. Our results demonstrated that ZnOB significantly improved the growth performance of soybean plants exposed to arsenic. This improvement was accompanied by a decrease (55%) in As accumulation and an increase in photosynthetic efficiency. ZnOB also modulated hormonal balance, with a significant increase in auxin (149%), abscisic acid (118%), gibberellin (160%) and jasmonic acid content (92%) under As(V) stress assuring that ZnONPs may enhance root growth and development by regulating hormonal signaling. We then conducted a transcriptomic analysis to understand further the molecular mechanisms underlying the NPs-induced As(V) tolerance. This analysis identified genes differentially expressed in response to ZnONPs supplementation, including those involved in auxin, abscisic acid, gibberellin, and jasmonic acid biosynthesis and signaling pathways. Weighted gene co-expression network analysis identified 37 potential hub genes encoding stress responders, transporters, and signal transducers across six modules potentially facilitated the efflux of arsenic from cells, reducing its toxicity. Our study provides valuable insights into the molecular mechanisms associated with metalloid tolerance in soybean and offers new avenues for improving As tolerance in contaminated soils.
RESUMO
Diaphorina citri serves as the primary vector for 'Candidatus Liberibacter asiaticus (CLas),' the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.
Assuntos
Fertilidade , Hemípteros , Hormônios de Inseto , Ácido Pirrolidonocarboxílico , Transdução de Sinais , Animais , Hormônios de Inseto/metabolismo , Hormônios de Inseto/genética , Feminino , Hemípteros/microbiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Rhizobiaceae/fisiologia , Rhizobiaceae/metabolismo , Metabolismo dos Lipídeos , Ovário/microbiologia , Ovário/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Hormônios Juvenis/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Liberibacter , OligopeptídeosRESUMO
The phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) is the putative causal pathogen of the severe Asiatic form of huanglongbing (citrus greening) and is most commonly transmitted by the Asiatic citrus psyllid Diaphorina citri. CLas severely affects many Citrus species and hybrids and has been recorded in the Citrus relative, orange jasmine, Murraya paniculata (L.) Jack (syn. M. exotica L.). In this study, 13 accessions of three Murraya species (M. paniculata, M. sumatrana Roxb., and M. lucida [G.Forst.] Mabb.) and the Papuan form of a putative hybrid (M. omphalocarpa Hayata) were identified morphologically and molecularly based on sequence identity of the matK-5'trnK region of the chloroplast genome, and infection on these plants under field conditions was determined by PCR and quantitative real-time PCR (qPCR) on two to four occasions over 14 months. CLas was repeatedly detected in leaflet midribs by PCR and qPCR on four and three accessions of M. paniculata and M. sumatrana, respectively. It was not detected in leaflet midribs of single accessions of M. lucida and M. omphalocarpa. The species identification of the CLas-positive accessions was further confirmed using all the molecular taxonomic markers consisting of the six fragments of the maternally inherited chloroplast genome and part of the nuclear-encoded internal transcribed spacer (ITS) region. The results indicated that natural infection of M. paniculata and M. sumatrana with CLas can occur in Java. To our knowledge, this is the first demonstration of the natural infection of M. sumatrana with CLas. Further studies are required to determine whether infections persist in the absence of D. citri.
Assuntos
Murraya , Doenças das Plantas , Rhizobiaceae , Murraya/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/classificação , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/fisiologia , Indonésia , DNA Bacteriano/genética , LiberibacterRESUMO
Drought is one of the main environmental factors affecting crop growth, and breeding drought-tolerant cultivars is one of the most economic and effective ways of increasing yields and ensuring sustainable agricultural production under drought stress. To facilitate the breeding of drought-tolerant wheat, this study was conducted to evaluate genotypic differences in the drought tolerance of 334 wheat genotypes collected from China and Australia with the aim of screening for drought-tolerant and -sensitive genotypes and to elucidate the corresponding physiological mechanisms. A hydroponic-air experiment (roots exposed to air for 7 h/d and continued for 6 d) showed significant genotypic differences in shoot and root dry weights among the genotypes. The relative shoot and root dry weights, expressed as the percentage of the control, showed a normal distribution, with variation ranges of 20.2-79.7% and 32.8-135.2%, respectively. The coefficients of variation were in the range of 18.2-22.7%, and the diversity index was between 5.71 and 5.73, indicating a rich genetic diversity among the wheat genotypes for drought tolerance. Using phenotypic differences in relative dry weights in responses to drought stress, 20 of each of the most drought-tolerant and drought-sensitive genotypes were selected; these were further evaluated in pot experiments (watering withheld until the soil moisture content reached four percent). The results showed that the trends in drought tolerance were consistent with the hydroponic-air experiment, with genotypes W147 and W235 being the most drought-tolerant and W201 and W282 the most sensitive. Significant genotypic differences in water use efficiency in response to drought were observed in the pot experiment, with the drought-tolerant genotypes being markedly higher and the two sensitive genotypes being no different from the control. A marked increase in bound water content in the drought stress plants was observed in the two drought-tolerant genotypes, while a decrease occurred in the free water. The reductions in photochemical efficiencies of PSII, transpiration rates, net photosynthesis rates, chlorophyll contents and stomatal conduction in the drought-sensitive genotypes W201 and W282 under drought stress were higher than the two tolerant genotypes. This study provides a theoretical guide and germplasm for the further genetic improvement of drought tolerance in wheat.
RESUMO
The evolution of insect vector-pathogen relationships has long been of interest in the field of molecular ecology. One system of special relevance, due to its economic impacts, is that between Diaphorina citri and 'Candidatus Liberibacter asiaticus' (CLas), the cause of the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts, boosting opportunities for pathogens to acquire new vector hosts. The molecular mechanism behind this life-history shift remains unclear. Here, we found that CLas promoted ovarian development and increased the expression of the vitellogenin receptor (DcVgR) in ovaries. DcVgR RNAi significantly decreased fecundity and CLas titer in ovaries, extended the preoviposition period, shortened the oviposition period and blocked ovarian development. Given their importance in gene regulation, we explored the role of miRNAs in shaping these phenotypes and their molecular triggers. Our results showed that one miRNA, miR-275, suppressed DcVgR expression by binding to its 3' UTR. Overexpression of miR-275 knocked down DcVgR expression and CLas titer in ovaries, causing reproductive defects that mimicked DcVgR knockdown phenotypes. We focused, further, on roles of the Juvenile Hormone (JH) pathway in shaping the observed fecundity phenotype, given its known impacts on ovarian development. After CLas infection, this pathway was upregulated, thereby increasing DcVgR expression. From these combined results, we conclude that CLas hijacks the JH signalling pathway and miR-275, thereby targeting DcVgR to increase D. citri fecundity. These changes simultaneously increase CLas replication, suggesting a pathogen-vector host mutualism, or a seemingly helpful, but cryptically costly life-history manipulation.
Assuntos
Citrus , Hemípteros , Liberibacter , MicroRNAs , Rhizobiaceae , Animais , Feminino , Rhizobiaceae/genética , Citrus/genética , Doenças das Plantas/genética , Hemípteros/genética , Fertilidade/genética , MicroRNAs/genética , Proliferação de CélulasRESUMO
Aluminum-activated malate transporters (ALMTs) and slow anion channels (SLACs) are important in various physiological processes in plants, including stomatal regulation, nutrient uptake, and in response to abiotic stress such as aluminum toxicity. To understand their evolutionary history and functional divergence, we conducted phylogenetic and expression analyses of ALMTs and SLACs in green plants. Our findings from phylogenetic studies indicate that ALMTs and SLACs may have originated from green algae and red algae, respectively. The ALMTs of early land plants and charophytes formed a monophyletic clade consisting of three subgroups. A single duplication event of ALMTs was identified in vascular plants and subsequent duplications into six clades occurred in angiosperms, including an identified clade, 1-1. The ALMTs experienced gene number losses in clades 1-1 and 2-1 and expansions in clades 1-2 and 2-2b. Interestingly, the expansion of clade 1-2 was also associated with higher expression levels compared to genes in clades that experienced apparent loss. SLACs first diversified in bryophytes, followed by duplication in vascular plants, giving rise to three distinct clades (I, II, and III), and clade II potentially associated with stomatal control in seed plants. SLACs show losses in clades II and III without substantial expansion in clade I. Additionally, ALMT clade 2-2 and SLAC clade III contain genes specifically expressed in reproductive organs and roots in angiosperms, lycophytes, and mosses, indicating neofunctionalization. In summary, our study demonstrates the evolutionary complexity of ALMTs and SLACs, highlighting their crucial role in the adaptation and diversification of vascular plants.
Assuntos
Magnoliopsida , Proteínas de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alumínio/metabolismo , Plantas/genética , Plantas/metabolismo , Evolução Biológica , Magnoliopsida/genética , Evolução MolecularRESUMO
Guar (Cyamopsis tetragonoloba L.) is a summer legume that is becoming a crucial industrial crop because of its high gum and protein content. Thus far, the combined effects of arbuscular mycorrhizal fungi (AMF) and Bradyrhizobium on the yield and chemical composition of guar plants are not well studied. Therefore, the current investigation was designed to estimate the individual as well as the combined effects of AMF and Bradyrhizobium on plant growth, yield and nutritional quality of seeds and leaves of guar. AMF and/or Bradyrhizobium inoculation improved chemical composition of guar seeds and its morpho-physiological (plant height, fresh weight, dry weight, and yield production) traits. In addition to increased guar growth and yield production, the inoculation of AMF and/or Bradyrhizobium increased guar leaf and seed minerals, fiber, lipids, crude protein and ash contents. At primary metabolites, there were increases in sugar levels including raffinose stachyose, verbascose and galactomannan. These increases in sugar provided a route for organic acids, amino acids and fatty acids production. Interestingly, there was an increase in essential amino acids and unsaturated fatty acids. At the bioactive secondary metabolite levels, biofertilizers improved phenols and flavonoids levels and anthocyanin and polyamines biosynthesis. In line with these increases, precursors of anthocyanin (phenylalanine, p-coumaric acid, and cinnamic acid) and the levels of polyamines (diaminopropane, putrescine, cadaverine, spermidine, spermine, and agmatine) were increased. Overall, for the first time, our study shed the light on how AMF and Bradyrhizobium improved guar yield and metabolism. Our findings suggested that the combined inoculation of AMF and Bradyrhizobium is an innovative approach to improve guar growth, yield production and yield quality.
Assuntos
Cyamopsis , Micorrizas , Fertilizantes , Antocianinas , Sementes , Folhas de Planta , Poliaminas , AçúcaresRESUMO
Populations of Diaphorina citri decline with elevation and, in a study in Bhutan, were rarely found above 1200 m ASL. The impact of ultraviolet (UV) radiation, particularly UV-B, on immature stages of the psyllid was proposed as limiting factor. As no studies have been undertaken on the influences of UV radiation on the development of D. citri, we examined the effects of UV-A and UV-B on different stadia of the psyllid. In addition, compliance with the Bunsen-Roscoe reciprocity law was examined. Irradiation with UV-A marginally reduced egg hatch and the survival times of emerging nymphs. Early instar nymphs were little affected by this waveband, but the survival of adults was reduced at the higher doses used. With UV-B, egg hatch and the survival times of early and late instar nymphs declined in proportion to UV-B dose. A dose of 57.6 kJ m-2 d-1 reduced the survival time of only adult females. Female fecundity was reduced at high UV-A and UV-B doses but increased at low doses. The Bunsen-Roscoe law held true for eggs and early instar nymphs for different durations and irradiances of UV-B. Eggs and nymphs had ED50 values for UV-B lower than the daily fluxes of this wavelength experienced worldwide. Thus, UV-B could be a factor causing the psyllid to be scarce at high elevations.
RESUMO
Detection of new viruses or new virus hosts is essential for the protection of economically important agroecosystems and human health. Increasingly, metatranscriptomic data are being used to facilitate this process. Such data were obtained from adult Asian citrus psyllids (ACP) (Diaphorina citri Kuwayama) that fed solely on mandarin (Citrus ×aurantium L.) plants grafted with buds infected with 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium associated with the severe Asian variant of huanglongbing (HLB), the most destructive disease of citrus. Brassica yellows virus (BrYV), the causative agent of yellowing or leafroll symptoms in brassicaceous plants, and its associated RNA (named as BrYVaRNA) were detected in ACP. In addition, the porcine reproductive and respiratory syndrome virus (PRRSV), which affects pigs and is economically important to pig production, was also found in ACP. These viruses were not detected in insects feeding on plants grafted with CLas-free buds. Changes in the concentrations of insect-specific viruses within the psyllid were caused by coinfection with CLas. IMPORTANCE The cross transmission of pathogenic viruses between different farming systems or plant communities is a major threat to plants and animals and, potentially, human health. The use of metagenomics is an effective approach to discover viruses and vectors. Here, we collected buds from the CLas-infected and CLas-free mandarin (Citrus ×aurantium L. [Rutaceae: Aurantioideae: Aurantieae]) trees from a commercial orchard and grafted them onto CLas-free mandarin plants under laboratory conditions. Through metatranscriptome sequencing, we first identified the Asian citrus psyllids feeding on plants grafted with CLas-infected buds carried the plant pathogen, brassica yellows virus and its associated RNA, and the swine pathogen, porcine reproductive and respiratory syndrome virus. These discoveries indicate that both viruses can be transmitted by grafting and acquired by ACP from CLas+ mandarin seedlings.
RESUMO
Chromium (Cr) contamination of agricultural soils is a major threat to human and plant health worldwide and causes reductions in plant growth and crop yields. 24-epibrassinolide (EBL) and nitric oxide (NO) have been shown to ameliorate the reductions in growth caused by the stresses induced by heavy metals; however, the interactions between EBL and NO on the alleviation of Cr-induced phytotoxicity have been poorly studied. Hence, this study was undertaken to examine any beneficial effects of EBL (0.01 µM) and NO (100 µM), applied alone or in combination, on the mitigation of stress induced by Cr (100 µM) in soybean seedlings. Although EBL and NO applied alone reduced the toxic effects of Cr, the combined treatment had the greatest effect. Mitigation of Cr intoxication occurred via reduced Cr uptake and translocation and by ameliorating reductions in water contents, light-harvesting pigments, and other photosynthetic parameters. In addition, the two hormones increased the activity of enzymatic and non-enzymatic defense mechanisms increasing the scavenging of reactive oxygen species, thereby reducing membrane damage and electrolyte leakage. Furthermore, the hormones reduced the accumulation of the toxic compound, methylglyoxal, by amplifying activities of glyoxalase I and glyoxalase II. Thus, applications of NO and EBL can significantly mitigate Cr-phytotoxicity when cultivating soybean plants in Cr-contaminated soils. However, further more-in depth studies including field investigations parallel with calculations of cost to profit ratios and yield losses are requested to validate the effectiveness of NO and/or EBL for remediation agents in Cr-contaminated soils with using key biomarkers (i.e., oxidative stress, antioxidant defense, and osmoprotectants) involved in the uptake, accumulation, and attenuation of Cr toxicity tested in our study.
Assuntos
Antioxidantes , Cromo , Humanos , Antioxidantes/metabolismo , Cromo/análise , Glycine max/metabolismo , Brassinosteroides/farmacologia , Óxido Nítrico/farmacologia , Estresse Oxidativo , Hormônios , SoloRESUMO
Rice (Oryza sativa L.) has inherently low concentrations of nitrogen (N) and zinc (Zn), and those concentrations are falling as the atmospheric concentration of carbon dioxide ([CO2]) increases, threatening the quality of human diets. We investigated the effect of two levels of Zn supply (marginal and luxury), on Zn and N concentrations in whole grain of two indica rice cvv. Differing in Zn-efficiency (IR26 (inefficient) and IR36 (efficient)), grown in sand culture at ambient (400 µL CO2 L-1 (a[CO2])) and elevated (700 µL CO2 L-1 (e[CO2])) CO2 concentrations. For both cvv., luxury Zn-supply increased vegetative growth, and the foliar and grain Zn concentrations; the increases in grain yield were greater at e[CO2]. The e[CO2] decreased grain Zn concentrations ([Zn]), as is consistently observed in other studies. However, unique to our study, luxury Zn-supply maintained grain N concentrations at e[CO2]. Our data also show that enhanced Zn uptake is the basis of the greater Zn-efficiency of IR36. Lastly, luxury Zn-supply and e[CO2] appreciably decreased the time to panicle emergence and, consequently, to maturity in both cvv. Since Zn-supply can be manipulated by both soil and foliar applications, these findings are potentially important for the quality and quantity of the global rice supply. That is, further investigation of our findings is justified. Key message: Luxury zinc supply maintains grain N concentration at 700 µL CO2 L-1.
RESUMO
The mechanisms underlie increased stress tolerance in plants of salinity stress in plants by arbuscular mycorrhizal fungi (AMF) are poorly understood, particularly the role of polyamine metabolism. The current study was conducted to investigate how inoculation with the AMF, Funneliformis constrictum, affects maize plant tolerance to salt stress. To this end, we investigated the changes in photosynthesis, redox status, primary metabolites (amino acids) and secondary metabolism (phenolic and polyamine metabolism). Control and inoculated maize plants were grown using different concentrations of diluted seawater (0%, 10%, 20% and 40%). Results revealed that treatment with 10% seawater had a beneficial effect on AMF and its host growth. However, irrigation with 20% and 40% significantly reduced plant growth and biomass. As seawater concentration increased, the plants' reliance on mycorrhizal fungi increased resulting in enhanced growth and photosynthetic pigments contents. Under higher seawater concentrations, inoculation with AMF reduced salinity induced oxidative stress and supported redox homeostasis by reducing H2O2 and MDA levels as well as increasing antioxidant-related enzymes activities (e.g., CAT, SOD, APX, GPX, POX, GR, and GSH). AMF inoculation increased amino acid contents in shoots and roots under control and stress conditions. Amino acids availability provides a route for polyamines biosynthesis, where AMF increased polyamines contents (Put, Spd, Spm, total Pas) and their metabolic enzymes associated (ADC, SAMDC, Spd synthase, and Spm synthase), particularly under 40% seawater irrigation. Consistently, the transcription of genes, involved in polyamine metabolism was also up regulated in salinity-stressed plants. AMF further increased the expression in genes involved in polyamine biosynthesis (ODC, SAMDC, SPDS2 and decreased expression of those in catabolic biosynthesis (ADC and PAO). Overall, inoculation with Funneliformis constrictum could be adopted as a practical strategy to alleviate salinity stress.
Assuntos
Micorrizas , Zea mays , Zea mays/microbiologia , Salinidade , Peróxido de Hidrogênio/metabolismo , Micorrizas/metabolismo , Poliaminas/metabolismo , Aminoácidos/metabolismoRESUMO
Rice (Oryza sativa), a staple crop for a substantial part of the world's population, is highly sensitive to soil salinity; however, some wild Oryza relatives can survive in highly saline environments. Sodium/hydrogen antiporter (NHX) family members contribute to Na+ homeostasis in plants and play a major role in conferring salinity tolerance. In this study, we analyzed the evolution of NHX family members using phylogeny, conserved domains, tertiary structures, expression patterns, and physiology of cultivated and wild Oryza species to decipher the role of NHXs in salt tolerance in Oryza. Phylogenetic analysis showed that the NHX family can be classified into three subfamilies directly related to their subcellular localization: endomembrane, plasma membrane, and tonoplast (vacuolar subfamily, vNHX1). Phylogenetic and structural analysis showed that vNHX1s have evolved from streptophyte algae (e.g., Klebsormidium nitens) and are abundant and highly conserved in all major land plant lineages, including Oryza. Moreover, we showed that tissue tolerance is a crucial trait conferring tolerance to salinity in wild rice species. Higher Na+ accumulation and reduced Na+ effluxes in leaf mesophyll were observed in the salt-tolerant wild rice species O. alta, O. latifolia, and O. coarctata. Among the key genes affecting tissue tolerance, expression of NHX1 and SOS1/NHX7 exhibited significant correlation with salt tolerance among the rice species and cultivars. This study provides insights into the evolutionary origin of plant NHXs and their role in tissue tolerance of Oryza species and facilitates the inclusion of this trait during the development of salinity-tolerant rice cultivars.
Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Oryza/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/fisiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Salinidade , Sódio/metabolismoRESUMO
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Evolução Molecular , Edição de Genes , MicroRNAs/genéticaRESUMO
Photosynthesis in wheat (Triticum aestivum L.) pericarps may contribute appreciably to wheat grain yield. Consequently, we investigated the temporal variation of traits related to photosynthesis and sucrose metabolism in the pericarps and flag leaves of three wheat genotypes, Huandoy, Amurskaja 75 and Greece 25, which are reported to differ in expression of genes related to the C4 pathway in wheat grain. Significant site-specific, genotypic and temporal variation in the maximum carboxylation rate (Vc max ) and maximum rates of electron transport (J max ) (biological capacity of carbon assimilation) were observed early in ontogeny that dissipated by late grain filling. Although the transcript abundance of rbcS and rbcL in flag leaves was significantly higher than in the pericarps, in line with their photosynthetic prominence, both organ types displayed similar expression patterns among growth stages. The higher N concentrations in the pericarps during grain enlargement suggest increased Rubisco; however, expression of rbcS and rbcL indicated the contrary. From heading to 14days post-anthesis, wheat pericarps exhibited a strong, positive correlation between biological capacity for carbon assimilation and expression of key genes related to sucrose metabolism (SPS1 , SUS1 and SPP1 ). The strong correlation between spike dry weight and the biological capacity for carbon assimilation along with other findings of this study suggest that metabolic processes in wheat spikes may play a major role in grain filling, total yield and quality.
Assuntos
Fotossíntese , Triticum , Genótipo , Fotossíntese/genética , Folhas de Planta/genética , Ribulose-Bifosfato Carboxilase/genética , Triticum/genéticaRESUMO
Species of wild rice (Oryza spp.) possess a wide range of stress tolerance traits that can be potentially utilized in breeding climate-resilient cultivated rice cultivars (Oryza sativa) thereby aiding global food security. In this study, we conducted a greenhouse trial to evaluate the salinity tolerance of six wild rice species, one cultivated rice cultivar (IR64) and one landrace (Pokkali) using a range of electrophysiological, imaging, and whole-plant physiological techniques. Three wild species (O. latifolia, O. officinalis and O. coarctata) were found to possess superior salinity stress tolerance. The underlying mechanisms, however, were strikingly different. Na+ accumulation in leaves of O. latifolia, O. officinalis and O. coarctata were significantly higher than the tolerant landrace, Pokkali. Na+ accumulation in mesophyll cells was only observed in O. coarctata, suggesting that O. officinalis and O. latifolia avoid Na+ accumulation in mesophyll by allocating Na+ to other parts of the leaf. The finding also suggests that O. coarctata might be able to employ Na+ as osmolyte without affecting its growth. Further study of Na+ allocation in leaves will be helpful to understand the mechanisms of Na+ accumulation in these species. In addition, O. coarctata showed Proto Kranz-like leaf anatomy (enlarged bundle sheath cells and lower numbers of mesophyll cells), and higher expression of C4-related genes (e.g., NADPME, PPDK) and was a clear outlier with respect to salinity tolerance among the studied wild and cultivated Oryza species. The unique phylogenetic relationship of O. coarctata with C4 grasses suggests the potential of this species for breeding rice with high photosynthetic rate under salinity stress in the future.
RESUMO
An apscaviroid, tentatively named citrus viroid VII (CVd-VII), was recently discovered in citrus in Australia. A diagnostic assay using real-time reverse transcription polymerase chain reaction was developed and validated to detect the viroid in citrus plants. The assay showed a high level of sensitivity, reliably detecting 2000 plasmid copies per reaction, while down to 20 plasmid copies per reaction were occasionally detected. The assay showed high specificity, producing no false positives or cross-reactivity with a range of other citrus graft-transmissible pathogens, including viroids, viruses and bacteria. The real-time assay was also found to be more sensitive than the available end-point reverse transcription polymerase chain reaction assay by a factor of 100,000 and could be a useful tool for the rapid detection of CVd-VII in diagnostic and research environments.
Assuntos
Citrus , Vírus de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Viroides , Austrália , Citrus/virologia , Vírus de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Viroides/genética , Viroides/isolamento & purificaçãoRESUMO
Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.
Assuntos
Antioxidantes/metabolismo , Hordeum/fisiologia , Proteínas de Plantas/genética , Potássio/metabolismo , Clorofila/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Hordeum/efeitos dos fármacos , Hordeum/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Osmorregulação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Polietilenoglicóis/efeitos adversos , Metabolismo Secundário/efeitos dos fármacos , Sódio/metabolismo , TibetRESUMO
Heat stress is a major environmental threat affecting crop growth and productivity. However, the molecular mechanisms associated with plant responses to heat stress are poorly understood. Here, we identified a heat stress-sensitive mutant, hts1, in rice. HTS1 encodes a thylakoid membrane-localized ß-ketoacyl carrier protein reductase (KAR) involved in de novo fatty acid biosynthesis. Phylogenetic and bioinformatic analysis showed that HTS1 probably originated from streptophyte algae and is evolutionarily conserved in land plants. Thermostable HTS1 is predominantly expressed in green tissues and strongly induced by heat stress, but is less responsive to salinity, cold and drought treatments. An amino acid substitution at A254T in HTS1 causes a significant decrease in KAR enzymatic activity and, consequently, impairs fatty acid synthesis and lipid metabolism in the hts1 mutant, especially under heat stress. Compared to the wild-type, the hts1 mutant exhibited heat-induced higher H2 O2 accumulation, a larger Ca2+ influx to mesophyll cells, and more damage to membranes and chloroplasts. Also, disrupted heat stress signaling in the hts1 mutant depresses the transcriptional activation of HsfA2s and the downstream target genes. We suggest that HTS1 is critical for underpinning membrane stability, chloroplast integrity and stress signaling for heat tolerance in rice.