Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(32): 23332-23340, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39049891

RESUMO

High-purity CaO cubic crystallites extracted from limestone exhibited excellent activity as base catalysts for waste cooking oil (WCO) conversion into biodiesel. Saponin from Sapindus rarak extract acted as a surfactant in CaO extraction and transformation into well-defined cubic microcrystallites. The application of saponin from Sapindus rarak extract as a surfactant for CaO production results in a high level of CaO purity and particle size reduction compared to directly calcined limestone (CaO-MgO). The catalytic activity was evaluated on CaO from hydrothermal and co-precipitation synthesis, MgO and CaO-MgO derived from limestone, giving hydrothermal CaO catalysts enhanced biodiesel yield. Optimization of transesterification conditions using Box Behnken Design response surface methodology achieved 92.40% biodiesel yield at 65 °C, 3 h reaction time and when using 5% of CaO catalysts.

2.
RSC Adv ; 14(7): 4509-4517, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312717

RESUMO

Tautomerism alters the structure and properties of materials, which can be exploited to control their chemical and biological activities. The role of pH-induced tautomerism of polyvinylpyrrolidone (PVP) was determined by measuring the size, stability, and antioxidant and antibacterial properties of microwave synthesized-silver nanoparticles (AgNPs). TEM and XRD analyses confirmed the formation of face-centered cubic silver nanoparticles. PVP stabilized the AgNPs by interaction with the carbonyl or hydroxyl groups depending on the tautomerization under different pH conditions. At pH 4, PVP was stable in the keto tautomer, stabilizing Ag through electron donation of oxygen atoms in the carbonyl group, producing smaller AgNPs with a higher zeta potential. At pH 7 and 9, the enol tautomer PVP stabilized the AgNPs via oxygen atoms in the hydroxyl group, forming large nanoparticles. The keto form of PVP improved the stability and antioxidant and antibacterial properties of AgNPs compared with the enol form. This study also excluded the antioxidant contribution of PVP via hydrogen donation to free radicals. A facile method for controlling the size of AgNPs by adapting the pH-induced tautomerism of PVP that affects their stability and antioxidant and antibacterial activities is thus reported.

3.
RSC Adv ; 14(10): 6815-6822, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405073

RESUMO

To consider silver nanoparticles (AgNPs) as a colorimetric sensor for H2O2 we require investigation of the effects of the homogeneity of the nanoparticle size and morphology on the sensor parameters. Uniformly-sized Ag nanoparticles with diameters of ∼18.8 ± 2.8 nm were produced using microwave irradiation (AgNP1) but non-uniform particles with diameters of ∼71.2 ± 19.4 nm (AgNP2) were formed without microwave irradiation. Microwave synthesis produced AgNP1 with superiority in terms of repeatability, selectivity and sensor stability for up to eight months of storage over AgNP2. AgNP1 exhibited higher sensitivity and detection limits in the working range of 0.01-40000 µM as compared to AgNP2. The application of the AgNP sensor to milk samples provided recovery values of 99.09-100.56% for AgNP1 and 98.18-101.90% for AgNP2. Microwave irradiation resulted in strong and uniform PVP-Ag interactions for isotropic growth into small nanoparticles. Size and morphology uniformity determined the characteristics of the AgNP sensor that can be applied for H2O2 detection in a wide range of concentrations and real-time evaluation, with the potential for industrial applications.

4.
RSC Adv ; 13(45): 31989-31999, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37915446

RESUMO

Conversion of red mud (RM) that contains a high level of silica, alumina and iron minerals into heterogenous catalysts, offers a route for the utilization of abundant toxic by-products of bauxite refining. In this study, the conversion of red mud into mesoporous Fe-aluminosilicate produced selective catalysts for the deoxygenation of waste cooking oil to green diesel hydrocarbons. Direct conversion of red mud in the presence cetyltrimethylammonium bromide into Fe-aluminosilicate (RM-CTA) produced a highly mesoporous structure with oligomeric Fe2O3 clusters within the pores. When red mud was treated with citric acid (RM-CA-CTA), a wide distribution of Fe2O3 particles was obtained on the aluminosilicate external surface. TEM analysis showed a well-defined hexagonal mesoporosity of Fe-aluminosilicate obtained from untreated red mud, while the treated red mud produced lower regularity mesopores. RM-CTA exhibits 60% WCO conversion and 83.72% selectivity towards liquid products with 80.44% diesel hydrocarbon (C11-C18) yield. The high selectivity was due to the high acidity of Fe-aluminosilicate to dissociate the C-O bond and the regularity of mesostructure for efficient hydrocarbon diffusion, preventing a cracking reaction.

5.
RSC Adv ; 13(46): 32648-32659, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37936636

RESUMO

Saponin is a plant-derived chemical with an amphiphilic glycoconjugate structure extracted from sapindaceae plants like Sapindus rarak. This study investigated saponin extract of Sapindus rarak as a natural template for formation of mesoporous zeolite Y. Surface area and mesoporosity of zeolite Y were improved with optimization of Sapindus rarak extract (SRE) concentration (Y-Ln; n = 2, 5, 10 or 15 mL), reaching 216.26 m2 mesoporous area and 0.214 cm3 g-1 mesoporous volume for Y-L10 samples. A different loading of Ni was impregnated onto Y-L10 zeolite to improve Lewis/Brønsted acidity as catalysts in the deoxygenation of Reutealis trisperma oil (RTO) into hydrocarbon fuels. Impregnating 15% Ni on NaY zeolite enhanced Lewis acidity to 0.4556 mmol g-1, producing 48.8% liquid oil with 85.43% degree of deoxygenation. A high selectivity towards C15 and C17 hydrocarbon was analyzed from liquid yield, indicating the contributing factor from Lewis acidity and mesoporosity to enhance deoxygenation and prevent the hydrocracking reaction.

6.
RSC Adv ; 13(21): 14236-14248, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180015

RESUMO

Optimization of hierarchical ZSM-5 structure by variation of the first hydrothermal step at different times provides insight into the evolution of micro/mesopores and its effect as a catalyst for deoxygenation reaction. The degree of tetrapropylammonium hydroxide (TPAOH) incorporation as an MFI structure directing agent and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) as a mesoporogen was monitored to understand the effect towards pore formation. Amorphous aluminosilicate without the framework-bound TPAOH achieved within 1.5 h of hydrothermal treatment provides flexibility to incorporate CTAB for forming well-defined mesoporous structures. Further incorporation of TPAOH within the restrained ZSM-5 framework reduces the flexibility of aluminosilicate gel to interact with CTAB to form mesopores. The optimized hierarchical ZSM-5 was obtained by allowing hydrothermal condensation at 3 h, in which the synergy between the readily formed ZSM-5 crystallites and the amorphous aluminosilicate generates the proximity between micropores and mesopores. A high acidity and micro/mesoporous synergy obtained after 3 h exhibit 71.6% diesel hydrocarbon selectivity because of the improved diffusion of reactant within the hierarchical structures.

7.
Int J Biol Macromol ; 204: 593-605, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35157900

RESUMO

Conversion of lignocellulosic biowastes from agricultural industry into nanocrystalline cellulose provides pathway to reduce environmental pollution while enhancing the economic value of biowastes. Nanocellulose (NCC) with uniform morphology was isolated from pepper (Piper nigrum L.) stalk waste (PW) using acid hydrolysis method. The role of inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid), organic acids (oxalic acid, citric acid, acetic acid) and variation of sonication times were investigated on the physicochemical characteristics, self-assembled structure, crystallinity, particle size, zeta potential and thermal stability of the isolated nanocellulose. Hydrolysis using inorganic acids transformed cellulose from PW into a spherical shaped NCC at ~33-67 nm of average diameter. Meanwhile hydrolysis in organic acids produced rod-shaped NCC at 210-321 nm in length. This study highlighted the role of acidity strength for organic acid and inorganic acid in controlling the level of hydrogen bond dissociation and the dissolution of amorphous fragments, which consequently directing the morphology and the physicochemical properties of NCCs.


Assuntos
Resíduos Industriais , Piper nigrum , Celulose/química , Hidrólise , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA