Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Breast Cancer Res ; 20(1): 36, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720220

RESUMO

BACKGROUND: Texture patterns have been shown to improve breast cancer risk segregation in addition to area-based mammographic density. The additional value of texture pattern scores on top of volumetric mammographic density measures in a large screening cohort has never been studied. METHODS: Volumetric mammographic density and texture pattern scores were assessed automatically for the first available digital mammography (DM) screening examination of 51,400 women (50-75 years of age) participating in the Dutch biennial breast cancer screening program between 2003 and 2011. The texture assessment method was developed in a previous study and validated in the current study. Breast cancer information was obtained from the screening registration system and through linkage with the Netherlands Cancer Registry. All screen-detected breast cancers diagnosed at the first available digital screening examination were excluded. During a median follow-up period of 4.2 (interquartile range (IQR) 2.0-6.2) years, 301 women were diagnosed with breast cancer. The associations between texture pattern scores, volumetric breast density measures and breast cancer risk were determined using Cox proportional hazard analyses. Discriminatory performance was assessed using c-indices. RESULTS: The median age of the women at the time of the first available digital mammography examination was 56 years (IQR 51-63). Texture pattern scores were positively associated with breast cancer risk (hazard ratio (HR) 3.16 (95% CI 2.16-4.62) (p value for trend <0.001), for quartile (Q) 4 compared to Q1). The c-index of texture was 0.61 (95% CI 0.57-0.64). Dense volume and percentage dense volume showed positive associations with breast cancer risk (HR 1.85 (95% CI 1.32-2.59) (p value for trend <0.001) and HR 2.17 (95% CI 1.51-3.12) (p value for trend <0.001), respectively, for Q4 compared to Q1). When adding texture measures to models with dense volume or percentage dense volume, c-indices increased from 0.56 (95% CI 0.53-0.59) to 0.62 (95% CI 0.58-0.65) (p < 0.001) and from 0.58 (95% CI 0.54-0.61) to 0.60 (95% CI 0.57-0.63) (p = 0.054), respectively. CONCLUSIONS: Deep-learning-based texture pattern scores, measured automatically on digital mammograms, are associated with breast cancer risk, independently of volumetric mammographic density, and augment the capacity to discriminate between future breast cancer and non-breast cancer cases.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico , Mama/diagnóstico por imagem , Detecção Precoce de Câncer , Adulto , Idoso , Índice de Massa Corporal , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Feminino , Humanos , Mamografia/métodos , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Medição de Risco , Fatores de Risco
2.
Breast Cancer Res ; 19(1): 126, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183348

RESUMO

BACKGROUND: In mammography, breast compression is applied to reduce the thickness of the breast. While it is widely accepted that firm breast compression is needed to ensure acceptable image quality, guidelines remain vague about how much compression should be applied during mammogram acquisition. A quantitative parameter indicating the desirable amount of compression is not available. Consequently, little is known about the relationship between the amount of breast compression and breast cancer detectability. The purpose of this study is to determine the effect of breast compression pressure in mammography on breast cancer screening outcomes. METHODS: We used digital image analysis methods to determine breast volume, percent dense volume, and pressure from 132,776 examinations of 57,179 women participating in the Dutch population-based biennial breast cancer screening program. Pressure was estimated by dividing the compression force by the area of the contact surface between breast and compression paddle. The data was subdivided into quintiles of pressure and the number of screen-detected cancers, interval cancers, false positives, and true negatives were determined for each group. Generalized estimating equations were used to account for correlation between examinations of the same woman and for the effect of breast density and volume when estimating sensitivity, specificity, and other performance measures. Sensitivity was computed using interval cancers occurring between two screening rounds and using interval cancers within 12 months after screening. Pair-wise testing for significant differences was performed. RESULTS: Percent dense volume increased with increasing pressure, while breast volume decreased. Sensitivity in quintiles with increasing pressure was 82.0%, 77.1%, 79.8%, 71.1%, and 70.8%. Sensitivity based on interval cancers within 12 months was significantly lower in the highest pressure quintile compared to the third (84.3% vs 93.9%, p = 0.034). Specificity was lower in the lowest pressure quintile (98.0%) compared to the second, third, and fourth group (98.5%, p < 0.005). Specificity of the fifth quintile was 98.4%. CONCLUSION: Results suggest that if too much pressure is applied during mammography this may reduce sensitivity. In contrast, if pressure is low this may decrease specificity.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Mamografia/métodos , Mamografia/normas , Adulto , Idoso , Detecção Precoce de Câncer , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Programas de Rastreamento , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Vigilância da População , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
3.
Breast Cancer Res ; 19(1): 67, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583146

RESUMO

BACKGROUND: In the light of the breast density legislation in the USA, it is important to know a woman's breast cancer risk, but particularly her risk of a tumor that is not detected through mammographic screening (interval cancer). Therefore, we examined the associations of automatically measured volumetric breast density with screen-detected and interval cancer risk, separately. METHODS: Volumetric breast measures were assessed automatically using Volpara version 1.5.0 (Matakina, New Zealand) for the first available digital mammography (DM) examination of 52,814 women (age 50 - 75 years) participating in the Dutch biennial breast cancer screening program between 2003 and 2011. Breast cancer information was obtained from the screening registration system and through linkage with the Netherlands Cancer Registry. We excluded all screen-detected breast cancers diagnosed as a result of the first digital screening examination. During a median follow-up period of 4.2 (IQR 2.0-6.2) years, 523 women were diagnosed with breast cancer of which 299 were screen-detected and 224 were interval breast cancers. The associations between volumetric breast measures and breast cancer risk were determined using Cox proportional hazards analyses. RESULTS: Percentage dense volume was found to be positively associated with both interval and screen-detected breast cancers (hazard ratio (HR) 8.37 (95% CI 4.34-16.17) and HR 1.39 (95% CI 0.82-2.36), respectively, for Volpara density grade category (VDG) 4 compared to VDG1 (p for heterogeneity < 0.001)). Dense volume (DV) was also found to be positively associated with both interval and screen-detected breast cancers (HR 4.92 (95% CI 2.98-8.12) and HR 2.30 (95% CI 1.39-3.80), respectively, for VDG-like category (C)4 compared to C1 (p for heterogeneity = 0.041)). The association between percentage dense volume categories and interval breast cancer risk (HR 8.37) was not significantly stronger than the association between absolute dense volume categories and interval breast cancer risk (HR 4.92). CONCLUSIONS: Our results suggest that both absolute dense volume and percentage dense volume are strong markers of breast cancer risk, but that they are even stronger markers for predicting the occurrence of tumors that are not detected during mammography breast cancer screening.


Assuntos
Densidade da Mama , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Idoso , Neoplasias da Mama/diagnóstico , Estudos de Coortes , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia , Programas de Rastreamento , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Razão de Chances , Medição de Risco
4.
Phys Med Biol ; 62(9): 3779-3797, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28230532

RESUMO

Fibroglandular tissue volume and percent density can be estimated in unprocessed mammograms using a physics-based method, which relies on an internal reference value representing the projection of fat only. However, pixels representing fat only may not be present in dense breasts, causing an underestimation of density measurements. In this work, we investigate alternative approaches for obtaining a tissue reference value to improve density estimations, particularly in dense breasts. Two of three investigated reference values (F1, F2) are percentiles of the pixel value distribution in the breast interior (the contact area of breast and compression paddle). F1 is determined in a small breast interior, which minimizes the risk that peripheral pixels are included in the measurement at the cost of increasing the chance that no proper reference can be found. F2 is obtained using a larger breast interior. The new approach which is developed for very dense breasts does not require the presence of a fatty tissue region. As reference region we select the densest region in the mammogram and assume that this represents a projection of entirely dense tissue embedded between the subcutaneous fatty tissue layers. By measuring the thickness of the fat layers a reference (F3) can be computed. To obtain accurate breast density estimates irrespective of breast composition we investigated a combination of the results of the three reference values. We collected 202 pairs of MRI's and digital mammograms from 119 women. We compared the percent dense volume estimates based on both modalities and calculated Pearson's correlation coefficients. With the references F1-F3 we found respectively a correlation of [Formula: see text], [Formula: see text] and [Formula: see text]. Best results were obtained with the combination of the density estimations ([Formula: see text]). Results show that better volumetric density estimates can be obtained with the hybrid method, in particular for dense breasts, when algorithms are combined to obtain a fatty tissue reference value depending on breast composition.


Assuntos
Densidade da Mama , Mamografia/métodos , Tecido Adiposo/diagnóstico por imagem , Algoritmos , Mama/anormalidades , Mama/diagnóstico por imagem , Feminino , Humanos , Hipertrofia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mamografia/normas
5.
Breast Cancer Res Treat ; 162(3): 541-548, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28161786

RESUMO

PURPOSE: Fibroglandular tissue may mask breast cancers, thereby reducing the sensitivity of mammography. Here, we investigate methods for identification of women at high risk of a masked tumor, who could benefit from additional imaging. METHODS: The last negative screening mammograms of 111 women with interval cancer (IC) within 12 months after the examination and 1110 selected normal screening exams from women without cancer were used. From the mammograms, volumetric breast density maps were computed, which provide the dense tissue thickness for each pixel location. With these maps, three measurements were derived: (1) percent dense volume (PDV), (2) percent area where dense tissue thickness exceeds 1 cm (PDA), and (3) dense tissue masking model (DTMM). Breast density was scored by a breast radiologist using BI-RADS. Women with heterogeneously and extremely dense breasts were considered at high masking risk. For each masking measure, mammograms were divided into a high- and low-risk category such that the same proportion of the controls is at high masking risk as with BI-RADS. RESULTS: Of the women with IC, 66.1, 71.9, 69.2, and 63.0% were categorized to be at high masking risk with PDV, PDA, DTMM, and BI-RADS, respectively, against 38.5% of the controls. The proportion of IC at high masking risk is statistically significantly different between BI-RADS and PDA (p-value 0.022). Differences between BI-RADS and PDV, or BI-RADS and DTMM, are not statistically significant. CONCLUSION: Measures based on density maps, and in particular PDA, are promising tools to identify women at high risk for a masked cancer.


Assuntos
Densidade da Mama , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Mamografia , Idoso , Artefatos , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Mamografia/métodos , Programas de Rastreamento , Pessoa de Meia-Idade , Países Baixos , Mascaramento Perceptivo , Curva ROC
6.
Breast Cancer Res Treat ; 162(1): 95-103, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28012087

RESUMO

PURPOSE: To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). METHODS: We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. RESULTS: Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend < 0.001). The screening sensitivity, calculated as the proportion of screen-detected among the total of screen-detected and interval tumors, was lower in higher density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend < 0.001). CONCLUSIONS: Volumetric mammographic density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Mamografia , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Feminino , Humanos , Metástase Linfática , Mamografia/métodos , Mamografia/normas , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Países Baixos/epidemiologia , Reprodutibilidade dos Testes
7.
Med Phys ; 44(2): 533-546, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28035663

RESUMO

PURPOSE: Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net." MATERIALS AND METHODS: We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed Pearson's correlation between the breast density values computed based on manual and automated segmentations. RESULTS: The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848 obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively. The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than 0.957 as obtained from 2C U-nets (P < 0.0001, Steiger's Z-test with Bonferoni correction) and 0.938 as obtained from atlas-based method (P = 0.0016). CONCLUSIONS: In conclusion, we applied a deep-learning method, U-net, for segmenting breast and FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results showed that U-net-based methods significantly outperformed the existing algorithms and resulted in significantly more accurate breast density computation.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Mamografia/métodos , Adulto , Idoso , Artefatos , Atlas como Assunto , Densidade da Mama , Conjuntos de Dados como Assunto , Feminino , Humanos , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão/métodos , Pele/diagnóstico por imagem
8.
Breast ; 29: 49-54, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27420382

RESUMO

Reliable breast density measurement is needed to personalize screening by using density as a risk factor and offering supplemental screening to women with dense breasts. We investigated the categorization of pairs of subsequent screening mammograms into density classes by human readers and by an automated system. With software (VDG) and by four readers, including three specialized breast radiologists, 1000 mammograms belonging to 500 pairs of subsequent screening exams were categorized into either two or four density classes. We calculated percent agreement and the percentage of women that changed from dense to non-dense and vice versa. Inter-exam agreement (IEA) was calculated with kappa statistics. Results were computed for each reader individually and for the case that each mammogram was classified by one of the four readers by random assignment (group reading). Higher percent agreement was found with VDG (90.4%, CI 87.9-92.9%) than with readers (86.2-89.2%), while less plausible changes from non-dense to dense occur less often with VDG (2.8%, CI 1.4-4.2%) than with group reading (4.2%, CI 2.4-6.0%). We found an IEA of 0.68-0.77 for the readers using two classes and an IEA of 0.76-0.82 using four classes. IEA is significantly higher with VDG compared to group reading. The categorization of serial mammograms in density classes is more consistent with automated software than with a mixed group of human readers. When using breast density to personalize screening protocols, assessment with software may be preferred over assessment by radiologists.


Assuntos
Densidade da Mama , Mama/diagnóstico por imagem , Competência Clínica/normas , Interpretação de Imagem Assistida por Computador/normas , Mamografia/normas , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/etiologia , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Fatores de Risco , Software
9.
IEEE Trans Med Imaging ; 35(5): 1322-1331, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26915120

RESUMO

Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.


Assuntos
Densidade da Mama/fisiologia , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Mamografia/métodos , Aprendizado de Máquina não Supervisionado , Adulto , Idoso , Neoplasias da Mama/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA