Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Res Sq ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39281883

RESUMO

GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-a-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3aDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3aDOG. Similarly to 3aDOG, 10C7 promoted the recruitment of b-arrestin-2 but GPR56 internalization was ß-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.

2.
Cell Mol Life Sci ; 81(1): 383, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231834

RESUMO

GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-α-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3αDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3αDOG. Similarly to 3αDOG, 10C7 promoted the recruitment of ß-arrestin-2 but GPR56 internalization was ß-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.


Assuntos
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Humanos , Transdução de Sinais , Células HEK293 , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Linhagem Celular Tumoral , Ligantes , Animais , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética
3.
Sci Signal ; 16(797): eadf2173, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552769

RESUMO

G protein-coupled receptors engage both G proteins and ß-arrestins, and their coupling can be biased by ligands and mutations. Here, to resolve structural elements and mechanisms underlying effector coupling to the angiotensin II (AngII) type 1 receptor (AT1R), we combined alanine scanning mutagenesis of the entire sequence of the receptor with pharmacological profiling of Gαq and ß-arrestin engagement to mutant receptors and molecular dynamics simulations. We showed that Gαq coupling to AT1R involved a large number of residues spread across the receptor, whereas fewer structural regions of the receptor contributed to ß-arrestin coupling regulation. Residue stretches in transmembrane domain 4 conferred ß-arrestin bias and represented an important structural element in AT1R for functional selectivity. Furthermore, we identified allosteric small-molecule binding sites that were enclosed by communities of residues that produced biased signaling when mutated. Last, we showed that allosteric communication within AT1R emanating from the Gαq coupling site spread beyond the orthosteric AngII-binding site and across different regions of the receptor, including currently unresolved structural regions. Our findings reveal structural elements and mechanisms within AT1R that bias Gαq and ß-arrestin coupling and that could be harnessed to design biased receptors for research purposes and to develop allosteric modulators.


Assuntos
Receptor Tipo 1 de Angiotensina , Transdução de Sinais , beta-Arrestinas/genética , beta-Arrestinas/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , beta-Arrestina 1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Angiotensina II/metabolismo
4.
Mol Psychiatry ; 27(5): 2425-2438, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393556

RESUMO

Latrophilin-3 (Lphn3; also known as ADGRL3) is a member of the adhesion G Protein Coupled Receptor subfamily, which participates in the stabilization and maintenance of neuronal networks by mediating intercellular adhesion through heterophilic interactions with transmembrane ligands. Polymorphisms modifying the Lphn3 gene are associated with attention-deficit/hyperactivity disorder (ADHD) in children and its persistence into adulthood. How these genetic alterations affect receptor function remains unknown. Here, we conducted the functional validation of distinct ADHD-related Lphn3 variants bearing mutations in the receptor's adhesion motif-containing extracellular region. We found that all variants tested disrupted the ability of Lphn3 to stabilize intercellular adhesion in a manner that was distinct between ligands classes, but which did not depend on ligand-receptor interaction parameters, thus pointing to altered intrinsic receptor signaling properties. Using G protein signaling biosensors, we determined that Lphn3 couples to Gαi1, Gαi2, Gαs, Gαq, and Gα13. However, all ADHD-related receptor variants consistently lacked intrinsic as well as ligand-dependent Gα13 coupling efficiency while maintaining unaltered coupling to Gαi, Gαs, and Gαq. Consistent with these alterations, actin remodeling functions as well as actin-relevant RhoA signaling normally displayed by the constitutively active Lphn3 receptor were impeded by select receptor variants, thus supporting additional signaling defects. Taken together, our data point to Gα13 selective signaling impairments as representing a disease-relevant pathogenicity pathway that can be inherited through Lphn3 gene polymorphisms. This study highlights the intricate interplay between Lphn3 GPCR functions and the actin cytoskeleton in modulating neurodevelopmental cues related to ADHD etiology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Actinas , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Receptores Acoplados a Proteínas G/genética , Virulência
5.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269644

RESUMO

Transient receptor potential canonical (TRPC) channels are membrane proteins involved in regulating Ca2+ homeostasis, and whose functions are modulated by G protein-coupled receptors (GPCR). In this study, we developed bioluminescent resonance energy transfer (BRET) biosensors to better study channel conformational changes following receptor activation. For this study, two intramolecular biosensors, GFP10-TRPC7-RLucII and RLucII-TRPC7-GFP10, were constructed and were assessed following the activation of various GPCRs. We first transiently expressed receptors and the biosensors in HEK293 cells, and BRET levels were measured following agonist stimulation of GPCRs. The activation of GPCRs that engage Gαq led to a Gαq-dependent BRET response of the functional TRPC7 biosensor. Focusing on the Angiotensin II type-1 receptor (AT1R), GFP10-TRPC7-RLucII was tested in rat neonatal cardiac fibroblasts, expressing endogenous AT1R and TRPC7. We detected similar BRET responses in these cells, thus validating the use of the biosensor in physiological conditions. Taken together, our results suggest that activation of Gαq-coupled receptors induce conformational changes in a novel and functional TRPC7 BRET biosensor.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Técnicas Biossensoriais , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Técnicas Biossensoriais/métodos , Células HEK293 , Humanos , Ratos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
6.
Sci Adv ; 5(11): eaax9115, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31807708

RESUMO

Selective activation of the δ-opioid receptor (DOP) has great potential for the treatment of chronic pain, benefitting from ancillary anxiolytic and antidepressant-like effects. Moreover, DOP agonists show reduced adverse effects as compared to µ-opioid receptor (MOP) agonists that are in the spotlight of the current "opioid crisis." Here, we report the first crystal structures of the DOP in an activated state, in complex with two relevant and structurally diverse agonists: the potent opioid agonist peptide KGCHM07 and the small-molecule agonist DPI-287 at 2.8 and 3.3 Å resolution, respectively. Our study identifies key determinants for agonist recognition, receptor activation, and DOP selectivity, revealing crucial differences between both agonist scaffolds. Our findings provide the first investigation into atomic-scale agonist binding at the DOP, supported by site-directed mutagenesis and pharmacological characterization. These structures will underpin the future structure-based development of DOP agonists for an improved pain treatment with fewer adverse effects.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos/química , Receptores Opioides delta/agonistas , Receptores Opioides delta/química , Animais , Cristalografia por Raios X , Humanos , Domínios Proteicos , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Células Sf9 , Spodoptera
7.
Biochem Pharmacol ; 168: 330-338, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31348898

RESUMO

The signaling mechanisms of the angiotensin II type 2 receptor (AT2R), a heptahelical receptor, have not yet been clearly and completely defined. In the present contribution, we set out to identify the molecular determinants involved in AT2R activation. Although AT2R has not been shown to engage Gq/11, G12, Gi2, and ß-arrestin (ßarr) pathways as does the AT1R upon angiotensin II (AngII) stimulation, the atypical positioning of helix VIII in the recently published AT2R structure may play a role in the receptor's capacity to couple to downstream effectors. In the AT2R structure, helix VIII points inwards and towards intracellular loop 3 (ICL3) to form tertiary interactions with transmembrane domain 6 (TM6), possibly impeding access to signaling effectors. On the other hand, in most class A GPCRs, helix VIII is found to be engaged in tertiary interactions with ICL1 and away from the effector binding site. Upon closer examination of the AT2R structure, we found that the residues contained within intracellular loop 1 (ICL1) may be involved in driving this unusual conformation of helix VIII. To explore this hypothesis, we designed a series of AT1R/AT2R receptor chimeras to validate the roles of ICL1 and helix VIII in AT2R signaling. Substituting the AT1R ICL1 into AT2R led to a mutant receptor that coupled to Gi2. The substitution of the helix VIII and C-terminal domains of AT2R into the AT1R backbone led to a mutant receptor that retained AT1R-like signaling properties. These results suggest that the C-terminal portion of AT2R is compatible with canonical GPCR signaling and that ICL1 of AT2R is involved in repositioning helix VIII, which impedes engagement of classical GPCR effectors such as G proteins or ßarrs.


Assuntos
Sequências Hélice-Alça-Hélice/fisiologia , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Receptor Tipo 2 de Angiotensina/química , Receptor Tipo 2 de Angiotensina/metabolismo , Angiotensina II/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Células HEK293 , Sequências Hélice-Alça-Hélice/efeitos dos fármacos , Humanos , Membranas Intracelulares/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor Tipo 2 de Angiotensina/agonistas
8.
ACS Chem Neurosci ; 10(3): 1615-1626, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30614675

RESUMO

Leu-enkephalin and d-Ala2-Leu-enkephalin were modified at their N- and C-termini with guanidyl and tetrazole groups. The resulting molecules were prepared in solution or by solid phase peptide synthesis. The affinity of the different analogues at mu (MOP) and delta opioid receptors (DOP) was then assessed by competitive binding in stably transfected DOP and MOP HEK293 cells. Inhibition of cAMP production and recruitment of ß-arrestin were also investigated. Finally, lipophilicity (logD7.4) and plasma stability of each compound were measured. Compared to the native ligands, we found that the replacement of the terminal carboxylate by a tetrazole slightly decreased both the affinity at mu and delta opioid receptors as well as the half-life. By contrast, replacing the ammonium at the N-terminus with a guanidyl significantly improved the affinity, the potency, as well as the lipophilicity and the stability of the resulting peptides. Replacing the glycine residue with a d-alanine in position 2 consistently improved the potency as well as the stability of the analogues. The best peptidomimetic of the whole series, guanidyl-Tyr-d-Ala-Gly-Phe-Leu-tetrazole, displayed sub-nanomolar affinity and an increased lipophilicity. Moreover, it proved to be stable in plasma for up to 24 h, suggesting that the modifications are protecting the compound against protease degradation.


Assuntos
Encefalina Leucina/análogos & derivados , Oligopeptídeos/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Animais , Células HEK293 , Humanos , Peptídeos Opioides/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo
10.
Sci Rep ; 8(1): 11415, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061705

RESUMO

The renin-angiotensin system regulates blood pressure and fluid balance in the body primarily via angiotensin receptor 1 (AT1R). Renal AT1R was found to be primarily responsible for Ang II-mediated hypertension. G protein-coupled receptor kinase 2 (GRK2) modulates AT1R desensitization and increased GRK2 protein expression is reported in hypertensive patients. However, the consequences of GRK2 inhibition on kidney functions remain unknown. We employed shGRK2 knockdown mice (shGRK2 mice) to test the role of GRK2 in kidney development and function that can be ultimately linked to the hypertensive phenotype detected in shGRK2 mice. GRK2 knockdown reduced kidney size, nephrogenesis and glomerular count, and impaired glomerular filtration. Glomerular damage in adult shGRK2 mice was associated with increased renin- and AT1R-mediated production of reactive oxygen species. The AT1R blocker, Losartan, normalized elevated blood pressure and markedly improved glomerular filtration in the shGRK2 knockdown mice. Our findings provide evidence for the crucial role of GRK2 in renal regulation of blood pressure. It also suggests that the detrimental outcomes of GRK2 inhibitors on the kidney should be carefully examined when used as antihypertensive.


Assuntos
Pressão Sanguínea/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Técnicas de Silenciamento de Genes , Rim/lesões , Rim/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Quinase 2 de Receptor Acoplado a Proteína G/deficiência , Taxa de Filtração Glomerular , Rim/efeitos dos fármacos , Rim/patologia , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Losartan/farmacologia , Camundongos Endogâmicos C57BL , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Renina/sangue , Soro/metabolismo
11.
Biochem Pharmacol ; 154: 104-117, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684376

RESUMO

G protein coupled receptors (GPCRs) produce pleiotropic effects by their capacity to engage numerous signaling pathways once activated. Functional selectivity (also called biased signaling), where specific compounds can bring GPCRs to adopt conformations that enable selective receptor coupling to distinct signaling pathways, continues to be significantly investigated. However, an important but often overlooked aspect of functional selectivity is the capability of ligands such as angiotensin II (AngII) to adopt specific conformations that may preferentially bind to selective GPCRs structures. Understanding both receptor and ligand conformation is of the utmost importance for the design of new drugs targeting GPCRs. In this study, we examined the properties of AngII cyclic analogs to impart biased agonism on the angiotensin type 1 receptor (AT1R). Positions 3 and 5 of AngII were substituted for cysteine and homocysteine residues ([Sar1Hcy3,5]AngII, [Sar1Cys3Hcy5]AngII and [Sar1Cys3,5]AngII) and the resulting analogs were evaluated for their capacity to activate the Gq/11, G12, Gi2, Gi3, Gz, ERK and ß-arrestin (ßarr) signaling pathways via AT1R. Interestingly, [Sar1Hcy3,5]AngII exhibited potency and full efficacy on all pathways tested with the exception of the Gq pathway. Molecular dynamic simulations showed that the energy barrier associated with the insertion of residue Phe8 of AngII within the hydrophobic core of AT1R, associated with Gq/11 activation, is increased with [Sar1Hcy3,5]AngII. These results suggest that constraining the movements of molecular determinants within a given ligand by introducing cyclic structures may lead to the generation of novel ligands providing more efficient biased agonism.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/metabolismo , Angiotensina II/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Angiotensina II/química , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Receptor Tipo 1 de Angiotensina/química , Transdução de Sinais/fisiologia
12.
Proc Natl Acad Sci U S A ; 114(51): 13477-13482, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29192023

RESUMO

The Gαs subunit is classically involved in the signal transduction of G protein-coupled receptors (GPCRs) at the plasma membrane. Recent evidence has revealed noncanonical roles for Gαs in endosomal sorting of receptors to lysosomes. However, the mechanism of action of Gαs in this sorting step is still poorly characterized. Here, we report that Gαs interacts with ubiquitin to regulate the endosomal sorting of receptors for lysosomal degradation. We reveal that the N-terminal extremity of Gαs contains a ubiquitin-interacting motif (UIM), a sorting element usually found in the endosomal sorting complex required for transport (ESCRT) machinery responsible for sorting ubiquitinated receptors into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). Mutation of the UIM in Gαs confirmed the importance of ubiquitin interaction for the sorting of epidermal growth factor receptor (EGFR) into ILVs for lysosomal degradation. These findings demonstrate a role for Gαs as an integral component of the ubiquitin-dependent endosomal sorting machinery and highlight the dual role of Gαs in receptor trafficking and signaling for the fine-tuning of the cellular response.


Assuntos
Endossomos/metabolismo , Receptores ErbB/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Células HEK293 , Células HeLa , Humanos , Ligação Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico
13.
Org Lett ; 19(8): 2018-2021, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28368122

RESUMO

Given the putative selectivity of the antagonist TIPP (Tyr-Tic-Phe-Phe) for δ-opioid receptors (DOP), this compound was selected for the design of a novel 64Cu-radiolabeled potent and selective DOP positron emission tomography (PET) imaging agent. Ex vivo autoradiography of TIPPD-PEG-K(NOTA/64Cu)-NH2 on rat brain sections produced a distribution pattern consistent with the known expression of DOP. Taken together, the in vitro and ex vivo data indicate that this 64Cu-tracer holds promise for studying the DOP by means of PET.

14.
J Biol Chem ; 290(25): 15835-15854, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25934394

RESUMO

Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and ß-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the ß-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar(1),Ile(8)]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the ß-arrestin pathway is linked to the stabilization of the ground state of the receptor.


Assuntos
Arrestinas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Simulação de Dinâmica Molecular , Receptor Tipo 1 de Angiotensina , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Arrestinas/química , Arrestinas/genética , Arrestinas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Quaternária de Proteína , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , beta-Arrestinas
15.
Mol Pharmacol ; 87(6): 982-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808928

RESUMO

The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, ßarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward ßarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι.


Assuntos
Angiotensina II/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/química , Arrestinas/metabolismo , Ativação Enzimática , Receptores ErbB/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Isoenzimas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Proteína Quinase C/metabolismo , Receptor Tipo 1 de Angiotensina/química , Transdução de Sinais , beta-Arrestinas
16.
Biochem Pharmacol ; 92(2): 280-8, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25175740

RESUMO

The vasoactive urotensin-II (UII), a cyclic undecapeptide widely distributed in cardiovascular, renal and endocrine systems, specifically binds the UII receptor (UT receptor), a G protein-coupled receptor (GPCR). The involvement of this receptor in numerous pathophysiological conditions including atherosclerosis, heart failure, hypertension, renal impairment and diabetes potentially makes it an interesting therapeutic target. To elucidate how UII binds the UT receptor through the identification of specific residues in transmembrane domains (TM) one (TM1) and two (TM2) that are involved in the formation of the receptor's binding pocket, we used the substituted-cysteine accessibility method (SCAM). Each residue of TM1 (V49((1.30)) to M76((1.57))) and TM2 (V88((2.41)) to H117((2.70))) was mutated, one by one, to a cysteine. The resulting mutants were then expressed in COS-7 cells and subsequently treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA treatment resulted in a significant binding inhibition of (125)I-UII to mutant I54C((1.35)) in TM1 and mutants Y100C((2.53)), S103C((2.56)), F106C((2.59)), I107C((2.60)), T110C((2.63)) and Y111C((2.64)) in TM2. These results identify key structural residues in TM1 and TM2 that participate in the formation of the UT receptor binding pocket. Together with previous SCAM analysis of TM3, TM4, TM5, TM6 and TM7, these results have led us to identify residues within all 7 TMs that participate in UT's binding pocket and have enabled us to propose a model of this receptor's orthosteric binding site.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Células COS , Chlorocebus aethiops , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/fisiologia , Ratos
17.
Biochem Pharmacol ; 86(11): 1584-93, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24084430

RESUMO

Urotensin-II (UII), a cyclic undecapeptide, selectively binds the urotensin-II receptor (UT receptor), a G protein-coupled receptor (GPCR) involved in cardiovascular effects and associated with numerous pathophysiological conditions including hypertension, atherosclerosis, heart failure, pulmonary hypertension and others. In order to identify specific residues in transmembrane domains (TM) three (TM3), four (TM4) and five (TM5) that are involved in the formation of the UT receptor binding pocket, we used the substituted-cysteine accessibility method (SCAM). Each residue in the F118((3.20)) to S146((3.48)) fragment of TM3, the L168((4.44)) to G194((4.70)) fragment of TM4 and the W203((5.30)) to V232((5.59)) fragment of TM5, was mutated, individually, to a cysteine. The resulting mutants were then expressed in COS-7 cells and subsequently treated with the positively charged sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA treatment resulted in a significant reduction in the binding of (125)I-UII to TM3 mutants L126C((3.28)), F127C((3.29)), F131C((3.33)) and M134C((3.36)) and TM4 mutants M184C((4.60)) and I188C((4.64)). No loss of binding was detected following treatment by MTSEA for all TM5 mutants tested. In absence of a crystal structure of UT receptor, these results identify key determinants in TM3, TM4 and TM5 that participate in the formation of the UT receptor binding pocket and has led us to propose a homology model of the UT receptor.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Técnicas de Cultura de Células , Chlorocebus aethiops , Cisteína/genética , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Ligantes , Modelos Moleculares , Mutação , Ratos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transfecção
18.
J Biol Chem ; 288(4): 2593-604, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23223579

RESUMO

G protein-coupled receptors contain selectively important residues that play central roles in the conformational changes that occur during receptor activation. Asparagine 111 (N111(3.35)) is such a residue within the angiotensin II type 1 (AT(1)) receptor. Substitution of N111(3.35) for glycine leads to a constitutively active receptor, whereas substitution for tryptophan leads to an inactivable receptor. Here, we analyzed the AT(1) receptor and two mutants (N111G and N111W) by molecular dynamics simulations, which revealed a novel molecular switch involving the strictly conserved residue D74(2.50). Indeed, D74(2.50) forms a stable hydrogen bond (H-bond) with the residue in position 111(3.35) in the wild-type and the inactivable receptor. However, in the constitutively active mutant N111G-AT(1) receptor, residue D74 is reoriented to form a new H-bond with another strictly conserved residue, N46(1.50). When expressed in HEK293 cells, the mutant N46G-AT(1) receptor was poorly activable, although it retained a high binding affinity. Interestingly, the mutant N46G/N111G-AT(1) receptor was also inactivable. Molecular dynamics simulations also revealed the presence of a cluster of hydrophobic residues from transmembrane domains 2, 3, and 7 that appears to stabilize the inactive form of the receptor. Whereas this hydrophobic cluster and the H-bond between D74(2.50) and W111(3.35) are more stable in the inactivable N111W-AT(1) receptor, the mutant N111W/F77A-AT(1) receptor, designed to weaken the hydrophobic core, showed significant agonist-induced signaling. These results support the potential for the formation of an H-bond between residues D74(2.50) and N46(1.50) in the activation of the AT(1) receptor.


Assuntos
Mutação , Receptor Tipo 1 de Angiotensina/química , Simulação por Computador , Sequência Conservada , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G , Receptores Opioides kappa/metabolismo , Relação Estrutura-Atividade
19.
J Biol Chem ; 285(4): 2284-93, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19940150

RESUMO

The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the AT(1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. Here, we investigated the role of the first and fourth transmembrane domains (TMDs) in the formation of the binding pocket of the human AT(1) receptor using the substituted-cysteine accessibility method. Each residue within the Phe-28((1.32))-Ile-53((1.57)) fragment of TMD1 and Leu-143((4.40))-Phe-170((4.67)) fragment of TMD4 was mutated, one at a time, to a cysteine. The resulting mutant receptors were expressed in COS-7 cells, which were subsequently treated with the charged sulfhydryl-specific alkylating agent methanethiosulfonate ethylammonium (MTSEA). This treatment led to a significant reduction in the binding affinity of TMD1 mutants M30C((1.34))-AT(1) and T33C((1.37))-AT(1) and TMD4 mutant V169C((4.66))-AT(1). Although this reduction in binding of the TMD1 mutants was maintained when examined in a constitutively active receptor (N111G-AT(1)) background, we found that V169C((4.66))-AT(1) remained unaffected when treated with MTSEA compared with untreated in this context. Moreover, the complete loss of binding observed for R167C((4.64))-AT(1) was restored upon treatment with MTSEA. Our results suggest that the extracellular portion of TMD1, particularly residues Met-30((1.34)) and Thr-33((1.37)), as well as residues Arg-167((4.64)) and Val-169((4.66)) at the junction of TMD4 and the second extracellular loop, are important binding determinants within the AT(1) receptor binding pocket but that these TMDs undergo very little movement, if at all, during the activation process.


Assuntos
Angiotensina II/metabolismo , Proteínas de Membrana , Receptor Tipo 1 de Angiotensina , Animais , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cisteína/genética , Cisteína/metabolismo , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Humanos , Indicadores e Reagentes/farmacologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida/métodos , Estrutura Terciária de Proteína , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
20.
J Biol Chem ; 284(46): 31953-61, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19773549

RESUMO

The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.


Assuntos
Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Vasoconstritores/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Humanos , Indicadores e Reagentes/farmacologia , Cinética , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Receptor Tipo 1 de Angiotensina/genética , Transfecção , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA