RESUMO
BACKGROUND: Evidence suggests that fronto-limbic brain regions and connecting white matter fibre tracts in the left hemisphere are more sensitive to glucocorticoids than in the right hemisphere. It is unknown whether treatment with glucocorticoids in childhood is associated with microstructural differences of the uncinate fasciculus and cingulum bundle, which connect fronto-limbic brain regions. Here, we tested the hypothesis that prior glucocorticoid treatment would be associated with differences in fractional anisotropy (FA) of the left relative to right uncinate fasciculus and cingulum bundle. METHODS: We performed diffusion-weighted imaging in 28 children and adolescents aged 7-16 years previously treated with glucocorticoids for nephrotic syndrome or rheumatic disease and 28 healthy controls. RESULTS: Patients displayed significantly different asymmetry in the microstructure of uncinate fasciculus with higher left but similar right uncinate fasciculus FA and axial diffusivity compared to controls. No apparent differences were observed for the cingulum. Notably, higher cumulative glucocorticoid doses were significantly associated with higher uncinate fasciculus FA and axial diffusivity bilaterally. CONCLUSIONS: Our findings indicate that previous glucocorticoid treatment for non-cerebral diseases in children and adolescents is associated with long-term changes in the microstructure of the uncinate fasciculi, and that higher cumulative glucocorticoid doses have a proportional impact on the microstructure. IMPACT: It is unknown if treatment with glucocorticoids in childhood have long-term effects on fronto-limbic white matter microstructure. The study examined if children and adolescents previously treated with glucocorticoids for nephrotic syndrome or rheumatic disorder differed in fronto-limbic white matter microstructure compared to healthy controls. The nephrotic and rheumatic patients had higher left but similar right uncinate fasciculus FA and axial diffusivity. Higher bilateral uncinate fasciculus FA and axial diffusivity was associated with higher cumulative glucocorticoid doses. We revealed new evidence suggesting that previous glucocorticoid treatment for non-cerebral diseases in children and adolescents is associated with long-term changes in uncinate fasciculi microstructure.
Assuntos
Síndrome Nefrótica , Substância Branca , Adolescente , Anisotropia , Encéfalo , Criança , Imagem de Tensor de Difusão/métodos , Feminino , Glucocorticoides/uso terapêutico , Humanos , Masculino , Síndrome Nefrótica/diagnóstico por imagem , Síndrome Nefrótica/tratamento farmacológico , Fascículo Uncinado , Substância Branca/diagnóstico por imagemRESUMO
BackgroundPerinatal exposure to glucocorticoids and elevated endogenous glucocorticoid levels during childhood can have detrimental effects on the developing brain. Here, we examined the impact of glucocorticoid treatment during childhood on brain volumes.MethodsA total of 30 children and adolescents with rheumatic or nephrotic disease previously treated with glucocorticoids and 30 controls matched on age, sex, and parent education underwent magnetic resonance imaging (MRI) of the brain. Total cortical gray and white matter, brain, intracranial volume, and total cortical thickness and surface area were derived from MRI scans.ResultsPatients had significantly smaller gray and white matter and total brain volumes relative to healthy controls. Brain volume differences disappeared when accounting for intracranial volume, as patients had relatively smaller intracranial volumes. Group differences were mainly driven by the children with rheumatic disease. Total cortical thickness and cortical surface area did not significantly differ between groups. We found no significant associations between glucocorticoid-treatment variables and volumetric measures.ConclusionObserved smaller total brain, cortical gray, and white matter volumes in children and adolescents previously treated with glucocorticoids compared with that in healthy controls may reflect both developmental and degenerative processes. Prospective longitudinal studies are warranted to clarify whether findings are related to treatment or disease.
Assuntos
Encéfalo/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Nefropatias/tratamento farmacológico , Doenças Reumáticas/tratamento farmacológico , Substância Branca/patologia , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Síndrome Nefrótica/tratamento farmacológico , Reconhecimento Automatizado de PadrãoRESUMO
Heightened levels of glucocorticoids in children and adolescents have previously been linked to prolonged changes in the diurnal regulation of the stress-hormone cortisol, a glucocorticoid regulated by the hypothalamic-pituitary-adrenal-axis (HPA-axis). To address this question, we examined the salivary cortisol awakening response (CAR) and daily cortisol output in 36 children and adolescents (25 girls/11 boys) aged 7-16 years previously treated with glucocorticoids for nephrotic syndrome or rheumatic disorder and 36 healthy controls. Patients and controls did not significantly differ in the CAR or diurnal cortisol output; however, sex-dependent group differences were observed. Specifically, female patients had a higher CAR relative to female controls, while male patients had higher daily cortisol levels compared to male controls. Notably, CAR in female patients and daily cortisol levels in male patients showed a positive linear relationship with the mean daily glucocorticoid doses administered during treatment. The observed dose-response associations suggest that glucocorticoid therapy during childhood and adolescence might trigger long-term changes in HPA-axis regulation, which may differ for males and females.