Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659001

RESUMO

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Assuntos
Cério , Óxido Ferroso-Férrico , Geobacter , Platina , Cério/química , Cério/metabolismo , Geobacter/metabolismo , Catálise , Óxido Ferroso-Férrico/química , Platina/química , Oxirredução , Compostos Férricos/química , Compostos Férricos/metabolismo
2.
Small ; 20(21): e2308948, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109148

RESUMO

Perovskite and spinel oxides are promising alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Herein, a novel perovskite/spinel nanocomposite comprised of SrCo0.4Fe0.6O3 and CoFe2O4 (SCF/CF) is prepared through a simple one-step method that incorporates iron doping into a SrCoO3- δ matrix, circumventing complex fabrication processes typical of these materials. At a Fe dopant content of 60%, the CoFe2O4 spinel phase is directly precipitated from the parent SrCo0.4Fe0.6O3 perovskite phase and the number of active B-site metals (Co/Fe) in the parent SCF can be maximized. This nanocomposite exhibits a remarkable OER activity in alkaline media with a small overpotentional of 294 mV at 10 mA cm-2. According to surface states analysis, the parent SCF perovskite remains in its pristine form under alkaline OER conditions, serving as a stable substrate, while the second spinel CF is covered by 5/8 monolayer (ML) O*, exhibiting considerable affinity toward the oxygen species involved in the OER. Analysis based on advanced OER microkinetic volcano model indicates that a 5/8 ML O* covered-CF is the origin for the remarkable activity of this nanocomposite. The results reported here significantly advance knowledge in OER and can boost application, scale-up and commercialisation of electrocatalytic technologies toward clean energy devices.

3.
Chem Sci ; 14(34): 9000-9009, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655027

RESUMO

The anion exchange membrane fuel cell (AEMFC), which can operate in alkaline media, paves a promising avenue for the broad application of earth-abundant element based catalysts. Recent pioneering studies found that zirconium nitride (ZrN) with low upfront capital cost can exhibit high activity, even surpassing that of Pt in alkaline oxygen reduction reaction (ORR). However, the origin of its superior ORR activity was not well understood. Herein, we propose a new theoretical framework to uncover the ORR mechanism of ZrN by integrating surface state analysis, electric field effect simulations, and pH-dependent microkinetic modelling. The ZrN surface was found to be covered by ∼1 monolayer (ML) HO* under ORR operating conditions, which can accommodate the adsorbates in a bridge-site configuration for the ORR. Electric field effect simulations demonstrate that O* adsorption on a 1 ML HO* covered surface only induces a consistently small dipole moment change, resulting in a moderate bonding strength that can account for the superior activity. Based on the identified surface state of ZrN and electric field simulations, pH-dependent microkinetic modelling found that ZrN reaches the Sabatier optimum of the kinetic ORR volcano model in alkaline media, with the simulated polarization curves being in excellent agreement with the experimental data of ZrN and Pt/C. Finally, we show that this theoretical framework can lead to a good explanation for the alkaline oxygen electrocatalysis of other transition metal nitrites such as Fe3N, TiN, and HfN. In summary, this study proposes a new framework to rationalize and design transition metal nitrides for alkaline ORR.

4.
ACS Appl Energy Mater ; 4(10): 10514-10533, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723137

RESUMO

Operation of proton-exchange membrane fuel cells is highly deteriorated by mass transfer loss, which is a result of spatial and temporal interaction between airflow, water flow, channel geometry, and its wettability. Prediction of two-phase flow dynamics in gas channels is essential for the optimization of the design and operating of fuel cells. We propose a mechanistic discrete particle model (DPM) to delineate dynamic water distribution in fuel cell gas channels and optimize the operating conditions. Similar to the experimental observations, the model predicts seven types of flow regimes from isolated, side wall, corner, slug, film, and plug flow droplets for industrial temporal and spatial scales. Consequently, two-phase flow regime maps are proposed. The results suggest that an increase in water accumulation in the channel is related to the increase in the water cluster density emerging from the gas diffusion layer rather than the increased water flow rate through constant water pathways. From a modeling perspective, the DPM replicated well volume-of-fluid channel simulation results in terms of saturation, water coverage ratio, and interface locations with an estimated 5 orders of magnitude increase in calculation speed.

5.
ACS Nano ; 15(4): 6765-6773, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33848131

RESUMO

Expanding nanomagnetism and spintronics into three dimensions (3D) offers great opportunities for both fundamental and technological studies. However, probing the influence of complex 3D geometries on magnetoelectrical phenomena poses important experimental and theoretical challenges. In this work, we investigate the magnetoelectrical signals of a ferromagnetic 3D nanodevice integrated into a microelectronic circuit using direct-write nanofabrication. Due to the 3D vectorial nature of both electrical current and magnetization, a complex superposition of several magnetoelectrical effects takes place. By performing electrical measurements under the application of 3D magnetic fields, in combination with macrospin simulations and finite element modeling, we disentangle the superimposed effects, finding how a 3D geometry leads to unusual angular dependences of well-known magnetotransport effects such as the anomalous Hall effect. Crucially, our analysis also reveals a strong role of the noncollinear demagnetizing fields intrinsic to 3D nanostructures, which results in an angular dependent magnon magnetoresistance contributing strongly to the total magnetoelectrical signal. These findings are key to the understanding of 3D spintronic systems and underpin further fundamental and device-based studies.

6.
Nano Lett ; 21(9): 3989-3996, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33899489

RESUMO

We report a rapid solution-phase strategy to synthesize alloyed PtNi nanoparticles which demonstrate outstanding functionality for the oxygen reduction reaction (ORR). This one-pot coreduction colloidal synthesis results in a monodisperse population of single-crystal nanoparticles of rhombic dodecahedral morphology with Pt-enriched edges and compositions close to Pt1Ni2. We use nanoscale 3D compositional analysis to reveal for the first time that oleylamine (OAm)-aging of the rhombic dodecahedral Pt1Ni2 particles results in Ni leaching from surface facets, producing aged particles with concave faceting, an exceptionally high surface area, and a composition of Pt2Ni1. We show that the modified atomic nanostructures catalytically outperform the original PtNi rhombic dodecahedral particles by more than two-fold and also yield improved cycling durability. Their functionality for the ORR far exceeds commercially available Pt/C nanoparticle electrocatalysts, both in terms of mass-specific activities (up to a 25-fold increase) and intrinsic area-specific activities (up to a 27-fold increase).

7.
RSC Adv ; 9(19): 10437-10444, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35515330

RESUMO

In this study, we present the use of sucrose (C12H22O11), which exists in abundance in nature, to prepare a carbon membrane without any preceding treatments. The preparation procedure was conducted using a low pyrolysis temperature, i.e., in the range of 300-500 °C, followed by complete formation of the structure of the carbon membrane. The gas separation characteristics of the resulting membranes were assessed by evaluating both hydrogen and methane permeation. The highest selectivity obtained for H2/CH4 was 31.34 with H2 permeability of 459.24 GPU. The entire fabrication procedure was designed to be economical in order to facilitate any future commercialization.

8.
J Hazard Mater ; 320: 241-251, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544737

RESUMO

A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr2+ ions from an aqueous phase. The encapsulation of the Sr2+ using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

9.
Sci Rep ; 6: 29845, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432047

RESUMO

The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.

10.
Biosensors (Basel) ; 5(2): 172-86, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25849347

RESUMO

We present a novel tunnel magnetoresistance (TMR) scanning microscope set-up capable of quantitatively imaging the magnetic stray field patterns of micron-sized elements in 3D. By incorporating an Anderson loop measurement circuit for impedance matching, we are able to detect magnetoresistance changes of as little as 0.006%/Oe. By 3D rastering a mounted TMR sensor over our magnetic barcodes, we are able to characterize the complex domain structures by displaying the real component, the amplitude and the phase of the sensor's impedance. The modular design, incorporating a TMR sensor with an optical microscope, renders this set-up a versatile platform for studying and imaging immobilised magnetic carriers and barcodes currently employed in biosensor platforms, magnetotactic bacteria and other complex magnetic domain structures of micron-sized entities. The quantitative nature of the instrument and its ability to produce vector maps of magnetic stray fields has the potential to provide significant advantages over other commonly used scanning magnetometry techniques.


Assuntos
Técnicas Biossensoriais/instrumentação , Microscopia de Tunelamento/instrumentação , Campos Magnéticos
11.
Br J Hosp Med (Lond) ; 75(10): 584-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25291612

RESUMO

Postgraduate medical trainees may take time out of programme for personal or professional reasons which can delay completion of training. This survey of out of programme trainees in England explores a phenomenon that impacts significantly upon medical careers and workforce planning.


Assuntos
Escolha da Profissão , Educação de Pós-Graduação em Medicina/métodos , Educação , Desenvolvimento de Programas , Estudantes de Medicina/psicologia , Adulto , Competência Clínica , Educação/métodos , Educação/organização & administração , Escolaridade , Inglaterra , Feminino , Humanos , Masculino , Motivação , Desenvolvimento de Programas/métodos , Desenvolvimento de Programas/estatística & dados numéricos , Avaliação de Programas e Projetos de Saúde , Validade Social em Pesquisa , Inquéritos e Questionários
12.
ACS Appl Mater Interfaces ; 5(20): 9983-90, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24070254

RESUMO

Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from ∼230 to ∼180 kJ mol(-1). They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g(-1) at a current density of 10 A g(-1), which increases to 145 F g(-1) upon the addition of 6% of MWNTs.


Assuntos
Celulose/análogos & derivados , Capacitância Elétrica , Nanofibras/química , Nanotubos de Carbono/química , Celulose/química , Técnicas Eletroquímicas , Eletrodos
13.
ACS Appl Mater Interfaces ; 2(1): 321-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20356252

RESUMO

Understanding the nature of the interface between nanofibers and polymer resins in composite materials is challenging because of the complexity of interactions that may occur between fibers and between the matrix and the fibers. The ability to select the most efficient amount of reinforcement for stress transfer, making a saving on both cost and weight, is also a key part of composite design. The use of Raman spectroscopy to investigate micromechanical properties of laminated bacterial cellulose (BC)/poly(l-lactic) acid (PLLA) resin composites is reported for the first time as a means for understanding the fundamental stress-transfer processes in these composites, but also as a tool to select appropriate processing and volume fraction of the reinforcing fibers. Two forms of BC networks are investigated, namely, one cultured for 3 days and another for 6 days. The mechanical properties of the latter were found to be higher than the former in terms of Young's modulus, stress at failure, and work of fracture. However, their specific Young's moduli (divided by density) were found to be similar. Young's modulus and stress at failure of transparent predominantly amorphous PLLA films were found to increase by 100 and 315%, respectively, for an 18% volume fraction of BC fibers. BC networks cultured for 3 days were shown to exhibit enhanced interaction with PLLA because of their higher total surface area compared, as measured by nitrogen adsorption, to the material cultured for 6 days. This enhanced interaction is confirmed by using the Raman spectroscopic approach, whereby larger band shift rates, of a peak initially located at 1095 cm(-1), with respect to both strain and stress, are observed, which is a quantitative measure of enhanced stress transfer. Thermal analysis (differential scanning calorimetry) and electron microscopy imaging (scanning electron microscopy) of the samples also confirms the enhanced coupling between the resin and the BC networks cultured for 3 days, compared to those cultured for 6 days. These results are shown to have implications for the use of BC networks for composite reinforcement, whereby less material can be used for the same specific mechanical properties. The technique also gives opportunities to study the interfaces in these composite materials in detail.


Assuntos
Bactérias , Celulose , Ácido Láctico , Teste de Materiais , Polímeros , Poliésteres , Estresse Mecânico
15.
J Phys Chem B ; 109(41): 19377-84, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16853502

RESUMO

The modification of the liquid/liquid interface with membranes of silicalite, a neutral framework zeolite, is used to extend the potential window. This feature allows the observation of the transfer of extremely hydrophilic ions, due to the size-exclusion of organic ions from the interior of the zeolitic framework. Similarly, volume exclusion effects are shown to affect facilitated ion transfer processes involving alkali metal cations. In contrast, proton transfer is largely unaffected by the presence of the zeolite, which is suggestive of more rapid diffusion processes within the interior of the framework. The technique of liquid/liquid electrochemistry should allow the measurement of solution phase transport parameters for ions within microporous hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA