Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurotherapeutics ; 20(3): 853-869, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36976493

RESUMO

We investigated whether pharmacological increase of "M-type" (KCNQ, Kv7) K + channel currents by the M-channel opener, retigabine (RTG), acutely after repetitive traumatic brain injuries (rTBIs), prevents or reduces their long-term detrimental effects. rTBIs were studied using a blast shock air wave mouse model. Animals were monitored by video and electroencephalogram (EEG) records for nine months after the last injury to assess the occurrence of post-traumatic seizures (PTS), post-traumatic epilepsy (PTE), sleep-wake cycle architecture alterations, and the power of the EEG signals. We evaluated the development of long-term changes in the brain associated with various neurodegenerative diseases in mice by examining transactive response DNA-binding protein 43 (TDP-43) expression and nerve fiber damage ~ 2 years after the rTBIs. We observed acute RTG treatment to reduce the duration of PTS and impair the development of PTE. Acute RTG treatment also prevented post-injury hypersomnia, nerve fiber damage, and cortical TDP-43 accumulation and translocation from the nucleus to the cytoplasm. Mice that developed PTE displayed impaired rapid eye movement (REM) sleep, and there were significant correlations between seizure duration and time spent in the different stages of the sleep-wake cycle. We observed acute RTG treatment to impair injury-induced reduction of age-related increase in gamma frequency power of the EGG, which has been suggested to be necessary for a healthy aged brain. The data show that RTG, administered acutely post-TBI, is a promising, novel therapeutic option to blunt/prevent several long-term effects of rTBIs. Furthermore, our results show a direct relationship between sleep architecture and PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Camundongos , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Convulsões/tratamento farmacológico , Convulsões/etiologia , Carbamatos/farmacologia , Carbamatos/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-38348128

RESUMO

Acute ischemic stroke (AIS) is the second leading cause of death globally. No Food and Drug Administration (FDA) approved therapies exist that target cerebroprotection following stroke. Our group recently reported significant cerebroprotection with the adenosine A1/A3 receptor agonist, AST-004, in a transient stroke model in non-human primates (NHP) and in a preclinical mouse model of traumatic brain injury (TBI). However, the specific receptor pathway activated was only inferred based on in vitro binding studies. The current study investigated the underlying mechanism of AST-004 cerebroprotection in two independent models of AIS: permanent photothrombotic stroke in mice and transient middle cerebral artery occlusion (MCAO) in rats. AST-004 treatments across a range of doses were cerebroprotective and efficacy could be blocked by A3R antagonism, indicating a mechanism of action that does not require A1R agonism. The high affinity A3R agonist MRS5698 was also cerebroprotective following stroke, but not the A3R agonist Cl-IB-MECA under our experimental conditions. AST-004 efficacy was blocked by the astrocyte specific mitochondrial toxin fluoroacetate, confirming an underlying mechanism of cerebroprotection that was dependent on astrocyte mitochondrial metabolism. An increase in A3R mRNA levels following stroke suggested an intrinsic cerebroprotective response that was mediated by A3R signaling. Together, these studies confirm that certain A3R agonists, such as AST-004, may be exciting new therapeutic avenues to develop for AIS.

3.
Neurotherapeutics ; 18(4): 2707-2721, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34608616

RESUMO

Traumatic brain injury (TBI) remains one of the greatest public health concerns with increasing morbidity and mortality rates worldwide. Our group reported that stimulation of astrocyte mitochondrial metabolism by P2Y1 receptor agonists significantly reduced cerebral edema and reactive gliosis in a TBI model. Subsequent data on the pharmacokinetics (PK) and rapid metabolism of these compounds suggested that neuroprotection was likely mediated by a metabolite, AST-004, which binding data indicated was an adenosine A3 receptor (A3R) agonist. The neuroprotective efficacy of AST-004 was tested in a control closed cortical injury (CCCI) model of TBI in mice. Twenty-four (24) hours post-injury, mice subjected to CCCI and treated with AST-004 (0.22 mg/kg, injected 30 min post-trauma) exhibited significantly less secondary brain injury. These effects were quantified with less cell death (PSVue794 fluorescence) and loss of blood brain barrier breakdown (Evans blue extravasation assay), compared to vehicle-treated TBI mice. TBI-treated mice also exhibited significantly reduced neuroinflammatory markers, glial-fibrillary acidic protein (GFAP, astrogliosis) and ionized Ca2+-binding adaptor molecule 1 (Iba1, microgliosis), both at the mRNA (qRT-PCR) and protein (Western blot and immunofluorescence) levels, respectively. Four (4) weeks post-injury, both male and female TBI mice presented a significant reduction in freezing behavior during contextual fear conditioning (after foot shock). AST-004 treatment prevented this TBI-induced impairment in male mice, but did not significantly affect impairment in female mice. Impairment of spatial memory, assessed 24 and 48 h after the initial fear conditioning, was also reduced in AST-004-treated TBI-male mice. Female TBI mice did not exhibit memory impairment 24 and 48 h after contextual fear conditioning and similarly, AST-004-treated female TBI mice were comparable to sham mice. Finally, AST-004 treatments were found to increase in vivo ATP production in astrocytes (GFAP-targeted luciferase activity), consistent with the proposed mechanism of action. These data reveal AST-004 as a novel A3R agonist that increases astrocyte energy production and enhances their neuroprotective efficacy after brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Feminino , Gliose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
4.
Purinergic Signal ; 16(4): 543-559, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33129204

RESUMO

Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of prototypical nucleotide P2Y1 receptor (P2Y1R) agonists and antagonists. These included the riboside nucleotide agonist 2-methylthio-ADP and antagonist MRS2179, as well as agonist MRS2365 and antagonist MRS2500 containing constrained (N)-methanocarba rings, which were previously reported to form nucleotides that are more slowly hydrolyzed at the α-phosphoester compared with the ribosides. In vitro incubations in mouse and human plasma and blood demonstrated the rapid hydrolysis of these compounds to nucleoside metabolites. This metabolism was inhibited by EDTA to chelate divalent cations required by ectonucleotidases for nucleotide hydrolysis. This rapid hydrolysis was confirmed in vivo in mouse pharmacokinetic studies that demonstrate that MRS2365 is a prodrug of the nucleoside metabolite AST-004 (MRS4322). Furthermore, we demonstrate that the nucleoside metabolites of MRS2365 and 2-methylthio-ADP are adenosine receptor (AR) agonists, notably at A3 and A1ARs. In vivo efficacy of MRS2365 in murine models of traumatic brain injury and stroke can be attributed to AR activation by its nucleoside metabolite AST-004, rather than P2Y1R activation. This research suggests the importance of reevaluation of previous in vitro and in vivo research of P2YRs and P2XRs as there is a potential that the pharmacology attributed to nucleotide agonists is due to AR activation by active nucleoside metabolites.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacocinética , Agonistas do Receptor A3 de Adenosina/farmacocinética , Pró-Fármacos/farmacocinética , Agonistas do Receptor Purinérgico P2Y/farmacocinética , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacocinética , Animais , Nucleotídeos de Desoxiadenina/farmacocinética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas do Receptor Purinérgico P2Y/farmacocinética , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P2Y1/metabolismo
5.
J Neurotrauma ; 37(2): 248-261, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31025597

RESUMO

Repetitive blast traumatic brain injury (TBI) affects numerous soldiers on the battlefield. Mild TBI has been shown to have long-lasting effects with repeated injury. We have investigated effects on neuronal excitability after repetitive, mild TBI in a mouse model of blast-induced brain injury. We exposed mice to mild blast trauma of an average peak overpressure of 14.6 psi, repeated across three consecutive days. While a single exposure did not reveal trauma as indicated by the glial fibrillary acidic protein indicator, three repetitive blasts did show significant increases. As well, mice had an increased indicator of inflammation (Iba-1) and increased tau, tau phosphorylation, and altered cytokine levels in the spleen. Video-electroencephalographic monitoring 48 h after the final blast exposure demonstrated seizures in 50% (12/24) of the mice, most of which were non-convulsive seizures. Long-term monitoring revealed that spontaneous seizures developed in at least 46% (6/13) of the mice. Patch clamp recording of dentate gyrus hippocampus neurons 48 h post-blast TBI demonstrated a shortened latency to the first spike and hyperpolarization of action potential threshold. We also found that evoked excitatory postsynaptic current amplitudes were significantly increased. These findings indicate that mild, repetitive blast exposures cause increases in neuronal excitability and seizures and eventual epilepsy development in some animals. The non-convulsive nature of the seizures suggests that subclinical seizures may occur in individuals experiencing even mild blast events, if repeated.


Assuntos
Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Neurônios/patologia , Convulsões/fisiopatologia , Animais , Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Epilepsia Pós-Traumática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/etiologia
6.
J Cereb Blood Flow Metab ; 40(6): 1256-1273, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31272312

RESUMO

Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.


Assuntos
Anticonvulsivantes/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Carbamatos/farmacologia , Canais de Potássio KCNQ/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenilenodiaminas/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
7.
Neurobiol Dis ; 94: 139-56, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27334877

RESUMO

The Ca(2+)-dependent phosphatase, calcineurin (CN) is thought to play a detrimental role in damaged neurons; however, its role in astrocytes is unclear. In cultured astrocytes, CNß expression increased after treatment with a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, and with oxygen and glucose deprivation, an in vitro model of ischemia. Similarly, CNß was induced in astrocytes in vivo in two different mouse models of brain injury - photothrombotic stroke and traumatic brain injury (TBI). Immunoprecipitation and chemical activation dimerization methods pointed to physical interaction of CNß with the unfolded protein response (UPR) sensor, protein kinase RNA-like endoplasmic reticulum kinase (PERK). In accordance, induction of CNß resulted in oligomerization and activation of PERK. Strikingly, the presence of a phosphatase inhibitor did not interfere with CNß-mediated activation of PERK, suggesting a hitherto undiscovered non-enzymatic role for CNß. Importantly, the cytoprotective function of CNß was PERK-dependent both in vitro and in vivo. Loss of CNß in vivo resulted in a significant increase in cerebral damage, and correlated with a decrease in astrocyte size, PERK activity and glial fibrillary acidic protein (GFAP) expression. Taken together, these data reveal a critical role for the CNß-PERK axis in not only prolonging astrocyte cell survival but also in modulating astrogliosis after brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Calcineurina/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo
8.
J Cereb Blood Flow Metab ; 33(4): 600-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23321785

RESUMO

Glia-based neuroprotection strategies are emerging as promising new avenues to treat brain damage. We previously reported that activation of the glial-specific purinergic receptor, P2Y(1)R, reduces both astrocyte swelling and brain infarcts in a photothrombotic mouse model of stroke. These restorative effects were dependent on astrocyte mitochondrial metabolism. Here, we extend these findings and report that P2Y(1)R stimulation with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2MeSADP) reduces and partially reverses neuronal damage induced by photothrombosis. In vivo neuronal morphology was confocally imaged in transgenic mice expressing yellow fluorescent protein under the control of the Thy1 promoter. Astrocyte mitochondrial membrane potentials, monitored with the potential sensitive dye tetra-methyl rhodamine methyl ester, were depolarized after photothrombosis and subsequently repolarized when P2Y(1)Rs were stimulated. Mice deficient in the astrocyte-specific type 2 inositol 1,4,5 trisphosphate (IP(3)) receptor exhibited aggravated ischemic dendritic damage after photothrombosis. Treatment of these mice with 2MeSADP did not invoke an intracellular Ca(2+) response, did not repolarize astrocyte mitochondria, and did not reduce or partially reverse neuronal lesions induced by photothrombotic stroke. These results demonstrate that IP(3)-Ca(2+) signaling in astrocytes is not only critical for P2Y(1)R-enhanced protection, but suggest that IP(3)-Ca(2+) signaling is also a key component of endogenous neuroprotection.


Assuntos
Difosfato de Adenosina/farmacologia , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Dendritos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Difosfato de Adenosina/análogos & derivados , Animais , Astrócitos/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Dendritos/genética , Dendritos/patologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Receptores Purinérgicos P2Y1/genética
9.
PLoS One ; 5(12): e14401, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21203502

RESUMO

Treatments to improve the neurological outcome of edema and cerebral ischemic stroke are severely limited. Here, we present the first in vivo single cell images of cortical mouse astrocytes documenting the impact of single vessel photothrombosis on cytotoxic edema and cerebral infarcts. The volume of astrocytes expressing green fluorescent protein (GFP) increased by over 600% within 3 hours of ischemia. The subsequent growth of cerebral infarcts was easily followed as the loss of GFP fluorescence as astrocytes lysed. Cytotoxic edema and the magnitude of ischemic lesions were significantly reduced by treatment with the purinergic ligand 2-methylthioladenosine 5' diphosphate (2-MeSADP), an agonist with high specificity for the purinergic receptor type 1 isoform (P2Y(1)R). At 24 hours, cytotoxic edema in astrocytes was still apparent at the penumbra and preceded the cell lysis that defined the infarct. Delayed 2MeSADP treatment, 24 hours after the initial thrombosis, also significantly reduced cytotoxic edema and the continued growth of the brain infarction. Pharmacological and genetic evidence are presented indicating that 2MeSADP protection is mediated by enhanced astrocyte mitochondrial metabolism via increased inositol trisphosphate (IP(3))-dependent Ca(2+) release. We suggest that mitochondria play a critical role in astrocyte energy metabolism in the penumbra of ischemic lesions, where low ATP levels are widely accepted to be responsible for cytotoxic edema. Enhancement of this energy source could have similar protective benefits for a wide range of brain injuries.


Assuntos
Infarto Encefálico/metabolismo , Edema/metabolismo , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Receptores Purinérgicos/metabolismo , Trombose/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Infarto Cerebral/patologia , Inositol 1,4,5-Trifosfato/metabolismo , Luz , Masculino , Camundongos , Receptores Purinérgicos P2Y1/metabolismo , Tionucleotídeos/farmacologia
10.
J Biol Chem ; 279(11): 10060-9, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14701866

RESUMO

The calcium-sensing receptor (CaR) recently has been shown to activate MAP kinase (ERK1/2) in various cell types as well as in heterologous expression systems. In this study we show that the CaR agonist NPS R-467 (1 microm), which does not activate the CaR by itself, robustly activates ERK1/2 in the presence of a low concentration of Ca(2+) (0.5 mm CaCl(2)) in human embryonic kidney (HEK) cells permanently expressing the human CaR (HEK-hCaR). Ca(2+) (4 mm) also activates ERK1/2 but with differing kinetics. CaR-dependent ERK1/2 activation begins to desensitize to 4 mm Ca(2+) after 10 min, whereas there is no desensitization to NPS R-467/CaCl(2) as late as 4 h. Moreover, recovery from desensitization occurs as rapidly as 30 min with 4 mm CaCl(2). Pretreatment of HEK-hCaR cells with concanavalin A (250 microg/ml) to block CaR internalization completely eliminated the NPS R-467/CaCl(2)-mediated ERK1/2 activation but did not block the 2-min time point of 4 mm Ca(2+)-mediated ERK1/2 activation. Neither dominant-negative dynamin (K44A) nor dominant-negative beta-arrestin inhibited ERK1/2 activation by either CaR agonist treatment, suggesting that CaR-elicited ERK1/2 signaling occurs via a dynamin-independent pathway. Pertussis toxin pretreatment partially attenuated the 4 mm Ca(2+)-ERK1/2 activation; this attenuated activity was completely restored by co-expression of the Galpha(i2) (C351I) but not Galpha(i1) (C351I) or Galpha(i3) (C351I) G proteins, PTX-insensitive G protein mutants. Taken together, these data suggest that both 4 mm Ca(2+) and NPS R-467/CaCl(2) activate ERK1/2 via distinguishable pathways in HEK-hCaR cells and may represent a nexus to differentially regulate differentiation versus proliferation via CaR activation.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Arrestinas/metabolismo , Western Blotting , Cloreto de Cálcio/farmacologia , Divisão Celular , Linhagem Celular , Concanavalina A/farmacologia , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Subunidade alfa Gi2 de Proteína de Ligação ao GTP , Genes Dominantes , Humanos , Immunoblotting , Sistema de Sinalização das MAP Quinases , Microscopia Confocal , Microscopia de Fluorescência , Proteína Quinase 3 Ativada por Mitógeno , Toxina Pertussis/farmacologia , Ligação Proteica , Transdução de Sinais , Fatores de Tempo , Transfecção , beta-Arrestinas
11.
Pancreas ; 25(3): 251-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12370536

RESUMO

INTRODUCTION: Both cerulein and cholecystokinin activate mitogen-activated protein (MAP) kinase (ERK1/2) in vivo and in isolated pancreatic acini. AIMS AND METHODOLOGY: ERK1/2 in pancreas homogenates was activated in rats rendered pancreatitic by subcutaneous injections of cerulein (5 microg/kg per hour). To determine if blocking ERK1/2 activity might rescue cerulein-induced acute pancreatitis, the "MAP kinase kinase" (also known as MEK1/2) inhibitors PD98059 and U0126 were administered in vivo. RESULTS: In rats pretreated with PD98059 (10 mg/kg per i.v. injection) or U0126 (5 mg/kg per i.v. injection) 30 minutes before and then together with hourly cerulein injections for 3 hours, pancreatitis was significantly attenuated on the basis of pancreatic wet weight and histology. Serum amylase concentration was significantly reduced when PD98059 was administered intraperitoneally (10 mg/kg per intraperitoneal injection). PD98059 also ameliorated pancreatitis over a 6-hour cerulein time course. The phosphorylation of pancreatic ERK1/2 was attenuated in PD98059- and U0126-treated animals at both 30 minutes and 3 hours after cerulein injection. Rats rendered neutropenic with vinblastine and pretreated with U0126 still showed attenuated manifestations of cerulein-induced acute pancreatitis, a finding suggesting that pancreatic ERK1/2 is mostly responsible for the effect, rather than infiltrating neutrophils. CONCLUSIONS: Inhibition of pancreatic ERK1/2 in vivo affords significant protection against inflammatory sequelae following cerulein-induced acute pancreatitis.


Assuntos
Butadienos/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Pancreatite/tratamento farmacológico , Doença Aguda , Animais , Ceruletídeo , MAP Quinase Quinase 1 , MAP Quinase Quinase 2 , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Pancreatite/induzido quimicamente , Pancreatite/enzimologia , Pancreatite/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA