Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(21): 22892-22902, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826543

RESUMO

Modulation of intramolecular charge transfer (ICT) has been tested in two antimony(V) porphyrins, SbT(DMP)P(OMe)2·PF6 and SbT(DMP)P(OTFE)2·PF6, where the meso-positions are occupied by 3,5-dimethoxyphenyl (DMP), and the axial positions are linked with either methoxy (OMe) or trifluoroethoxy (OTFE) units, respectively. The presence of the Sb(+5) ion makes the porphyrin center electron poor. Under this situation, placing electron-rich units in the meso-position creates a condition for push-pull type ICT in the SbT(DMP)P(OMe)2·PF6. Remarkably, it is shown that the ICT character can be further enhanced in SbT(DMP)P(OTFE)2·PF6 with the help of electron-withdrawing TFE units in the axial position, which makes the porphyrin center even more electron scarce. The steady-state and transient studies as well as solvatochromism studies establish the ICT in SbT(DMP)P(OMe)2·PF6 and SbT(DMP)P(OTFE)2·PF6, and the strength of the ICT can be modulated by exploiting the structural properties of antimony(V) porphyrin. The existence of ICT is further supported by density functional theory calculations. The transient studies show that upon excitation of these porphyrin, their charge-transfer states convert to a full charger-separated states with appreciable lifetimes.

2.
Inorg Chem ; 62(18): 7097-7110, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37099270

RESUMO

A series of fluorinated antimony(V) porphyrins, SbTPP(OMe)2·PF6, SbTPP(OTFE)2·PF6, SbT(4F)PP(OMe)2·PF6, SbT(35F)PP(OMe)2·PF6, SbT(345F)PP(OMe)2·PF6, SbT(4CF3)PP(OMe)2·PF6, SbT(35CF3)PP(OMe)2·PF6, and SbT(35CF3)PP(OTFE)2·PF6, have been synthesized with phenyl [P], 4-fluorophenyl [(4F)P], 3,5-difluorophenyl [(35F)P], 3,4,5-difluorophenyl [(345F)P], 4-trifluoromethylphenyl [(4CF3)P], and 3,5-bis(trifluoromethyl)phenyl [(35CF3)P], in the meso-positions. Additionally, the SbTPP(OTFE)2·PF6 and SbT(35CF3)PP(OTFE)2·PF6 carry trifluoroethoxy units in their axial-positions. The fluorination on the porphyrin peripherals ranges from zero fluorine atoms in SbTPP(OMe)2·PF6 to 30 fluorine atoms in SbT(35CF3)PP(OTFE)2·PF6. X-ray crystallography confirmed the structures of the investigated antimony(V) porphyrins. The absorption spectra depend on the number of fluorine atoms as it is blue-shifted with increasing fluorination. The series also exhibited rich redox chemistry with two reduction processes and one oxidation process. Remarkably, these porphyrins manifested the lowest reduction potentials reported among the main-group porphyrins, which are as low as -0.08 V vs SCE for SbT(35CF3)PP(OTFE)2·PF6. On the contrary, the oxidation potentials were found to be very large, that is equal to 2.20 V vs SCE or even higher for SbT(4CF3)PP(OMe)2·PF6 or SbT(35CF3)PP(OMe)2·PF6 and SbT(35CF3)PP(OTFE)2·PF6, respectively. These unprecedented potentials are due to a combination of two factors: (i) the +5-oxidation state of antimony in the porphyrin cavity and (ii) the presence of the strong electron-withdrawing fluorine atoms on the porphyrin peripherals. Density functional theory (DFT) calculations were used to support the experimental results. The systematic study of antimony(V) porphyrins, especially their high potentials, make them ideal for the construction of photoelectrodes and excellent electron acceptors for photoelectrochemical cells and artificial photosynthetic systems, respectively, for solar energy conversion and storage applications.

3.
Inorg Chem ; 61(42): 16573-16585, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36223643

RESUMO

To study the photophysical and redox properties as a function of meso-aryl units, a series of hypervalent phosphorus(V) porphyrins, PP(OMe)2·PF6, PMP(OMe)2·PF6, PDMP(OMe)2·PF6, P345TMP(OMe)2·PF6, and P246TMP(OMe)2·PF6, with phenyl (P), 4-methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), 3,4,5-trimethoxyphenyl (345TMP), and 2,4,6-trimethoxyphenyl (246TMP) units, respectively, have been synthesized. The P(+5) in the cavity makes the porphyrin ring electron-poor, whereas the methoxy groups make the meso-phenyl rings electron-rich. The presence of electron-rich and electron-poor portions within the porphyrin molecule promoted an intramolecular charge transfer (ICT). Also, the study suggests that the ICT depends on the number and position of the methoxy groups. The ICT is more prominent in m-methoxy-substituted phosphorus(V) porphyrins (PDMP(OMe)2.PF6, P345TMP(OMe)2·PF6) and almost no ICT was found in no-methoxy, o-methoxy, and/or p-methoxy phosphorus(V) porphyrins (PP(OMe)2·PF6, PMP(OMe)2·PF6, P246TMP(OMe)2·PF6). Transient absorption studies indicate that the ICT takes place on the picosecond time scale. The most striking results come from P246TMP(OMe)2·PF6, where each phenyl ring carries three methoxy units, like the P345TMP(OMe)2·PF6, but it failed to induce the ICT process. Electrochemical studies and time-dependent density functional theory (TD-DFT) calculations were used to support the experimental results. This study extensively explores why and how slight variations in meso-aryl substitutions lead to intricate changes in the photophysical and redox properties of phosphorus(V) porphyrins.


Assuntos
Porfirinas , Porfirinas/química , Fósforo , Elétrons , Oxirredução
4.
Dalton Trans ; 51(15): 5890-5903, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35348158

RESUMO

The +5 oxidation state of antimony induced push-pull style intramolecular charge transfer in an elegantly designed axial dimethoxyantimony(V) porphyrin series: SbP(OMe)2·PF6, SbMP(OMe)2·PF6, SbDMP(OMe)2·PF6, SbTMP(OMe)2·PF6 with phenyl (P), 4-methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), and 3,4,5-trimethoxyphenyl (TMP) units, respectively, in its meso positions. The Sb(+5) made the porphyrin ring electron-poor, whereas the methoxy groups on the phenyl unit produced electron-rich sites within the molecule. The presence of electron-poor and electron-rich parts in the same molecule resulted in a push-pull type intramolecular charge transfer (ICT). However, the ICT is strongly dependent on the position of the methoxy groups on the phenyl ring. The charge transfer character is more pronounced in meta-methoxy substituted antimony(V) derivatives (SbDMP(OMe)2·PF6, SbTMP(OMe)2·PF6) than the para-methoxy or no-methoxy substituted antimony(V) derivatives (SbP(OMe)2·PF6, SbMP(OMe)2·PF6). Steady-state and transient spectroscopic techniques, as well as solvatochromism techniques, were employed to establish the tunable ICT. Additionally, time-dependant density functional theory (TD-DFT) calculations were used to complement the experimental results. The systematic study of antimony(V) porphyrins, especially the tunable push-pull nature could play an important role in instigating high yield charge-separated states in multi-modular donor-acceptor systems for solar energy conversion and molecular electronic and photonic applications.


Assuntos
Porfirinas , Energia Solar , Antimônio , Teoria da Densidade Funcional , Elétrons , Porfirinas/química
5.
Inorg Chem ; 60(23): 17952-17965, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797977

RESUMO

Six new "axial-bonding" type "phosphorus(V) porphyrin-naphthalene" conjugates have been prepared consisting of octaethylporphyrinatophosphorus(V) (POEP+)/tetraphenylporphyrinatophosphorus(V) (PTPP+) and naphthalene (NP). The distance between the porphyrin and NP was systematically varied using polyether bridges. The unique structural topology of the octaethylporphyrinatophosphorus(V) (POEP+) and tetraphenylporphyrinatophosphorus(V) (PTPP+) enabled construction of mono- and disubstituted phosphorus(V) porphyrin-naphthalene conjugates, respectively. The steady-state and transient spectral properties were investigated as a function of redox properties, distance, and molecular topology. Strong electronic interactions between the phosphorus(V) porphyrin and NP in directly bound conjugates were observed. The established energy diagrams predicted reductive electron transfer involving singlet excited phosphorus(V) porphyrin and NP to generate high-energy (∼1.83-2.11 eV) charge-separated states (POEP/PTPP)•-(NP)•+. Femtosecond transient absorption spectral studies revealed rapid deactivation of singlet excited phosphorus(V) porphyrin due to charge separation wherein the estimated forward rate constants were in the range of 109-1010 s-1 and were dependent on the distance between the NP and porphyrins units, as well as the redox potentials of the type of the phosphorus(V) porphyrin. Additionally, due to high exothermicity and low-lying triplet states, the charge recombination process was found to be rapid, leading to populating the triplet states of phosphorus(V) porphyrins.

6.
Phys Chem Chem Phys ; 23(2): 960-970, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367389

RESUMO

Photosensitizers with high energy, long lasting charge-transfer states are important components in systems designed for solar energy conversion by multistep electron transfer. Here, we show that in a push-pull type, µ-oxo-bridged porphyrin heterodimer composed of octaethylporphyrinatoaluminum(iii) and octaethylporphyrinatophosphorus(v), the strong excitonic coupling between the porphyrins and the different electron withdrawing abilities of Al(iii) and P(v) promote the formation of a high energy CT state. Using, an array of optical and magnetic resonance spectroscopic methods along with theoretical calculations, we demonstrate photodynamics of the heterodimer that involves the initial formation of a singlet CT which relaxes to a triplet CT state with a lifetime of ∼130 ps. The high-energy triplet CT state (3CT = 1.68 eV) lasts for nearly 105 µs prior to relaxing to the ground state.

7.
J Am Chem Soc ; 142(22): 10008-10024, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32343561

RESUMO

In supramolecular reaction center models, the lifetime of the charge-separated state depends on many factors. However, little attention has been paid to the redox potential of the species that lie between the donor and acceptor in the final charge separated state. Here, we report on a series of self-assembled aluminum porphyrin-based triads that provide a unique opportunity to study the influence of the porphyrin redox potential independently of other factors. The triads, BTMPA-Im→AlPorFn-Ph-C60 (n = 0, 3, 5), were constructed by linking the fullerene (C60) and bis(3,4,5-trimethoxyphenyl)aniline (BTMPA) to the aluminum(III) porphyrin. The porphyrin (AlPor, AlPorF3, or AlPorF5) redox potentials are tuned by the substitution of phenyl (Ph), 3,4,5-trifluorophenyl (PhF3), or 2,3,4,5,6-pentafluorophenyl (PhF5) groups in its meso positions. The C60 and BTMPA units are bound axially to opposite faces of the porphyrin plane via covalent and coordination bonds, respectively. Excitation of all of the triads results in sequential electron transfer that generates the identical final charge separated state, BTMPA•+-Im→AlPorFn-Ph-C60•-, which lies energetically 1.50 eV above the ground state. Despite the fact that the radical pair is identical in all of the triads, remarkably, the lifetime of the BTMPA•+-Im→AlPorFn-Ph-C60•- radical pair was found to be very different in each of them, that is, 1240, 740, and 56 ns for BTMPA-Im→AlPorF5-Ph-C60, BTMPA-Im→AlPorF3-Ph-C60, and BTMPA-Im→AlPor-Ph-C60, respectively. These results clearly suggest that the charge recombination is an activated process that depends on the midpoint potential of the central aluminum(III) porphyrin (AlPorFn).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA