Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38536027

RESUMO

Females are born with a finite and non-renewable reservoir of oocytes, which therefore decline both in number and quality with advancing age. A striking characteristic of oocyte quality is that "ageing" effects manifest whilst women are in their thirties and are therefore still chronologically and physically young. Furthermore, this decline is unrelenting and not modifiable to any great extent by lifestyle or diet. Since oocyte quality is rate-limiting for pregnancy success, as the proportion of good-quality oocytes progressively deteriorate, the chance of successful pregnancy during each 6-12-month period also decreases, becoming exponential after 37 years. Unlike oocyte quality, age-related attrition in the size of the ovarian reservoir is less impactful for natural fertility since only one mature oocyte is typically ovulated per menstrual cycle. In contrast, oocyte numbers are pivotal for in-vitro fertilization success, since larger numbers enable better-quality oocytes to be found and is important for buffering the inefficiencies of the IVF process. The ageing trajectory is accelerated in ~10% of women, so-called premature ovarian ageing, with ~1% of women at the extreme end of this spectrum with loss of ovarian function occurring before 40 years of age, termed premature ovarian insufficiency. The aim of this review was to analyze how ageing impacts the size and quality of the oocyte pool along with emerging interventions for combating low oocyte numbers and improving quality.

2.
Cell Rep ; 43(3): 113917, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446665

RESUMO

Embryonic genome activation (EGA) marks the transition from dependence on maternal transcripts to an embryonic transcriptional program. The precise temporal regulation of gene expression, specifically the silencing of the Dux/murine endogenous retrovirus type L (MERVL) program during late 2-cell interphase, is crucial for developmental progression in mouse embryos. How this finely tuned regulation is achieved within this specific window is poorly understood. Here, using particle-tracking microrheology throughout the mouse oocyte-to-embryo transition, we identify a surge in cytoplasmic viscosity specific to late 2-cell interphase brought about by high microtubule and endomembrane density. Importantly, preventing the rise in 2-cell viscosity severely impairs nuclear reorganization, resulting in a persistently open chromatin configuration and failure to silence Dux/MERVL. This, in turn, derails embryo development beyond the 2- and 4-cell stages. Our findings reveal a mechanical role of the cytoplasm in regulating Dux/MERVL repression via nuclear remodeling during a temporally confined period in late 2-cell interphase.


Assuntos
Desenvolvimento Embrionário , Retrovirus Endógenos , Camundongos , Animais , Viscosidade , Desenvolvimento Embrionário/genética , Cromatina , Citoplasma , Regulação da Expressão Gênica no Desenvolvimento
3.
Fertil Steril ; 121(2): 314-322, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099868

RESUMO

OBJECTIVE: To study the fertility treatment pathways used by women with and without polycystic ovary syndrome (PCOS) and which pathways were more likely to result in a birth. DESIGN: This retrospective national community-based cohort study used longitudinal self-report survey data (collected 1996-2022; aged 18-49 years) from women born in 1973-1978 who are participants in the Australian Longitudinal Study on Women's Health. The study also used linked administrative data on fertility treatments (1996-2021). PATIENTS: Of the 8,463 eligible women, 1,109 accessed fertility treatment and were included. EXPOSURE: Polycystic ovary syndrome diagnosis was self-reported. MAIN OUTCOME MEASURE: use of ovulation induction (OI), intrauterine insemination, and/or in vitro fertilization (IVF) was established through linked administrative data. Births were self-reported. RESULTS: One in 10 of the eligible participants had PCOS (783/7,987, 10%) and 1 in 4 of the women who used fertility treatment had PCOS (274/1,109, 25%). Women with PCOS were 3 years younger on average at first fertility treatment (M = 31.4 years, SD = 4.18) than women without PCOS (M = 34.2 years, SD = 4.56). Seven treatment pathways were identified and use differed by PCOS status. Women with PCOS were more likely to start with OI (71%; odds ratio [OR] 4.20, 95% confidence interval [CI]: 2.91, 6.07) than women without PCOS (36%). Of the women with PCOS who started with OI, 46% required additional types of treatment. More women without PCOS ended up in IVF (72% vs. 51%). Overall, 63% (701/1,109) had an attributed birth, and in adjusted regressions births did not vary by last type of treatment (IVF: 67%, reference; intrauterine insemination: 67%, OR 0.94 95% CI: 0.56, 1.58; OI: 61%, OR 0.71, 95% CI: 0.52, 0.98), or by PCOS status (OR 1.27, 95% CI: 0.91, 1.77). By age, 74% of women under 35 years (471/639) and 49% of women 35 years or older had a birth. CONCLUSION: More women with PCOS used fertility treatment but births were equivalent to women without PCOS. Most women followed clinical recommendations. Births did not differ between pathways, so there was no disadvantage in starting with less invasive treatments (although there may be financial or emotional disadvantages).


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Humanos , Feminino , Pessoa de Meia-Idade , Adulto , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/epidemiologia , Síndrome do Ovário Policístico/terapia , Estudos Longitudinais , Estudos de Coortes , Estudos Retrospectivos , Web Semântica , Infertilidade Feminina/diagnóstico , Infertilidade Feminina/epidemiologia , Infertilidade Feminina/terapia , Austrália/epidemiologia
5.
EMBO Rep ; 23(11): e55251, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36214648

RESUMO

Microtubules typically promote nuclear centring during early embryonic divisions in centrosome-containing vertebrates. In acentrosomal mouse zygotes, microtubules also centre male and female pronuclei prior to the first mitosis, this time in concert with actin. How nuclear centring is brought about in subsequent acentrosomal embryonic divisions has not been studied. Here, using time-lapse imaging in mouse embryos, we find that although nuclei are delivered to the cell centre upon completion of the first mitotic anaphase, the majority do not remain stationary and instead travel all the way to the cortex in a microtubule-dependent manner. High cytoplasmic viscosity in 2-cell embryos is associated with non-diffusive mechanisms involving actin for subsequent nuclear centring when microtubules again exert a negative influence. Thus, following the first mitotic division, pro-centring actin-dependent mechanisms work against microtubule-dependent de-centring forces. Disrupting the equilibrium of this tug-of-war compromises nuclear centring and symmetry of the subsequent division potentially risking embryonic development. This circuitous centring process exposes an embryonic vulnerability imposed by microtubule-dependent de-centring forces.


Assuntos
Actinas , Microtúbulos , Gravidez , Masculino , Feminino , Camundongos , Animais , Núcleo Celular , Centrossomo , Mitose , Fuso Acromático
6.
Cell Rep ; 39(5): 110789, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508138

RESUMO

Inactivation of cyclin-dependent kinase 1 (Cdk1), controlled by cyclin B1 proteolysis, orders events during mitotic exit. Here, we used a FRET biosensor to study Cdk1 activity while simultaneously monitoring anaphase II and pronuclear (PN) formation in live mouse eggs throughout fertilization. We find that Cdk1 inactivation occurs over two phases separated by a 3-h pause, the first induces anaphase II and the second induces PN formation. Although both phases require the inhibitory Cdk1 kinase Wee1B, only the first involves cyclin B1 proteolysis. Enforcing the 3-h pause is critical for providing the delay required for male PN formation and is mediated by spindle midzone-dependent sequestration of Wee1B between the first and second phases. Thus, unlike continuous Cdk1 inactivation driven by cyclin B1 proteolysis during mitotic exit, MII oocytes engineer a physiologically important pause during fertilization involving two different pathways to inactivate Cdk1, only the first of which requires proteolysis.


Assuntos
Proteína Quinase CDC2/metabolismo , Oócitos , Animais , Ciclina B1/metabolismo , Desenvolvimento Embrionário , Fertilização , Masculino , Meiose , Camundongos , Oócitos/metabolismo
7.
Bio Protoc ; 11(15): e4104, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458398

RESUMO

Females are endowed at birth with a fixed reserve of oocytes, which declines both in quantity and quality with advancing age. Understanding the molecular mechanisms regulating oocyte quality is crucial for improving the chances of pregnancy success in fertility clinics. In vitro culture systems enable researchers to analyse important molecular and genetic regulators of oocyte maturation and fertilisation. Here, we describe in detail a highly reproducible technique for the isolation and culture of fully grown mouse oocytes. We include the considerations and precautionary measures required for minimising the detrimental effects of in vitro culture conditions. This technique forms the starting point for a wide range of experimental approaches such as post-transcriptional gene silencing, immunocytochemistry, Western blotting, high-resolution 4D time-lapse imaging, and in vitro fertilization, which are instrumental in dissecting the molecular determinants of oocyte quality. Hence, this protocol serves as a useful, practical guide for any oocyte researcher beginning experiments aimed at investigating important oocyte molecular factors. Graphic abstract: A step-by-step protocol for the isolation and in vitro culture of oocytes from mice.

8.
Commun Biol ; 4(1): 645, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059773

RESUMO

WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Proteínas do Tecido Nervoso/metabolismo , Espermatogênese/genética , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Citoesqueleto/metabolismo , Feminino , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Espermátides/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Testículo/metabolismo
10.
Front Genet ; 12: 647996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995483

RESUMO

Early decline in ovarian function known as premature ovarian aging (POA) occurs in around 10% of women and is characterized by a markedly reduced ovarian reserve. Premature ovarian insufficiency (POI) affects ~1% of women and refers to the severe end of the POA spectrum in which, accelerated ovarian aging leads to menopause before 40 years of age. Ovarian reserve refers to the total number of follicle-enclosed oocytes within both ovaries. Oocyte DNA integrity is a critical determinant of ovarian reserve since damage to DNA of oocytes within primordial-stage follicles triggers follicular apoptosis leading to accelerated follicle depletion. Despite the high prevalence of POA, very little is known regarding its genetic causation. Another little-investigated aspect of oocyte DNA damage involves low-grade damage that escapes apoptosis at the primordial follicle stage and persists throughout oocyte growth and later follicle development. Senataxin (SETX) is an RNA/DNA helicase involved in repair of oxidative stress-induced DNA damage and is well-known for its roles in preventing neurodegenerative disease. Recent findings uncover an important role for SETX in protecting oocyte DNA integrity against aging-induced increases in oxidative stress. Significantly, this newly identified SETX-mediated regulation of oocyte DNA integrity is critical for preventing POA and early-onset female infertility by preventing premature depletion of the ovarian follicular pool and reducing the burden of low-grade DNA damage both in primordial and fully-grown oocytes.

11.
Curr Opin Obstet Gynecol ; 33(3): 218-224, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769423

RESUMO

PURPOSE OF REVIEW: Oocyte quality is rate-limiting for pregnancy success and declines with age. Here, I review animal-study evidence showing dramatic reversal of oocyte ageing with mitochondrial nutrients and explore clinical evidence related to their usage. RECENT FINDINGS: Oocyte ageing is strongly tied to mitochondrial dysfunction and oxidative stress. Quality-defining events occur over a protracted period (2-3 months in humans) when oocyte volume increases over 100-fold. Treating mice during the growth phase with mitochondrial modifiers such as CoQ10 combats oocyte ageing. Exciting new work shows that raising oocyte NAD+ levels also dramatically rejuvenate aged oocytes. However, evidence that any of these agents can reproducibly improve quality in humans is lacking. This is largely because there has been a focus on patients with poor ovarian response during IVF and/or low ovarian follicular pool size, rather than patients with poor oocyte quality. In addition, studies have used short-term treatment during ovarian stimulation after oocyte growth is already complete. SUMMARY: Mitochondrial therapeutics such as NAD+-boosting used during the oocyte's growth phase markedly improve oocyte quality in mice. Evaluating them in humans should focus on patients with poor oocyte quality and utilise per-oocyte (rather than per-cycle) endpoints after adequate treatment that captures the growth phase when quality is defined.


Assuntos
Oócitos , Indução da Ovulação , Envelhecimento , Animais , Feminino , Fertilização in vitro , Humanos , Camundongos , Mitocôndrias , Oócitos/metabolismo , Ovário , Gravidez
12.
Semin Reprod Med ; 38(1): 21-28, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232987

RESUMO

Infertility is described as unexplained when pregnancy does not occur despite ovulation, patent Fallopian tubes, and normal semen parameters. Oocyte developmental competence (or quality) is rate-limiting for pregnancy success as oocytes provide virtually all the cellular building blocks including mitochondria required during embryogenesis. However, available tests estimate oocyte numbers (anti-Müllerian hormone, follicle-stimulating hormone and antral follicle count) and ovulation (luteal phase serum progesterone) but not the third, and most pivotal, oocyte-specific parameter, quality. Severe depletion of the follicular reserve manifests as premature ovarian insufficiency and is an obvious cause of anovulation with overt symptoms and clear diagnostic criteria. In contrast, there are no biomarkers of poor oocyte quality other than through in vitro fertilization when readouts of oocyte quality such as preimplantation embryo development can be assessed. The most common cause of poor oocyte quality is natural aging, which is strongly tied to reduced oocyte mitochondrial efficiency and increased oxidative stress. In younger women, quality may also be impaired due to accelerated aging or sporadic genetic mutations which cause severe defects during oocyte and embryo development. Thus, poor oocyte quality often provides an explanation for infertility, but because it cannot be measured using conventional tests, many cases of infertility are often incorrectly labeled "unexplained." Since female age remains the best predictor of oocyte quality, age over 37 years should be considered an independent diagnostic criterion.


Assuntos
Infertilidade Feminina/etiologia , Oócitos/metabolismo , Fatores Etários , Feminino , Humanos , Infertilidade Feminina/genética , Mutação , Oócitos/crescimento & desenvolvimento , Reserva Ovariana , Gravidez
13.
Reprod Biol Endocrinol ; 18(1): 120, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239046

RESUMO

BACKGROUND: Thyroid autoimmunity (TAI) - the presence of anti-thyroid peroxidase and/or anti-thyroglobulin antibodies - affects 8-14% of reproductively-aged women. It is hotly debated whether TAI adversely affects IVF/ICSI outcomes. This systematic review and meta-analysis evaluated the relationship between thyroid autoimmunity (TAI) and IVF/ICSI outcomes, both overall and amongst euthyroid women of known age using strict criteria for grouping pregnancy outcomes. METHODS: The review was registered with PROSPERO: CRD42019120947. Searches were undertaken in MEDLINE, EMBASE, Web of Science and Cochrane Database from Inception-March 2020. Primary outcomes were clinical pregnancy rate, clinical miscarriage rate, biochemical pregnancy loss, livebirth rate per-cycle and live birth rate per clinical pregnancy (CP). RESULTS: 14 studies were included in the meta-analysis. Compared with women who tested negative for thyroid autoantibodies (TAI-), there was no significant difference in clinical pregnancy rate overall (OR 0.86; 95%CI [0.70, 1.05]; P = 0.14; 11 studies; I2 = 29.0%), or in euthyroid women (OR 0.88; 95%CI [0.69, 1.12]; P = 0.29; 10 studies; I2 = 32.0%). There was also no significant difference in clinical miscarriage rate overall (OR 1.04; 95%CI [0.52, 2.07]; P = 0.908; 8 studies; I2 = 53%), or in euthyroid women (OR 1.18; 95%CI [0.52, 2.64]; P = 0.69; 7 studies; I2 = 54%). There was no significant difference in biochemical pregnancy loss (OR 1.14; 95%CI [0.48, 2.72]; P = 0.769; 4 studies; I2 = 0.0%), live birth rate per cycle (OR 0.84; 95%CI [0.67, 1.06]; P = 0.145; I2 = 1.7%), live birth rate per clinical pregnancy (OR 0.67; 95%CI [0.28, 1.60]; P = 0.369; I2 = 69.2%), both overall and in euthyroid women as all studies included consisted of euthyroid women only. There was also no significant difference in number of embryos transferred, number of oocytes retrieved, mean maternal age or TSH levels overall or in euthyroid women. CONCLUSION: The findings of the present study suggest that thyroid autoimmunity has no effect on pregnancy outcomes in euthyroid women alone, or in euthyroid women and women with subclinical hypothyroidism.


Assuntos
Autoimunidade/imunologia , Fertilização in vitro/métodos , Injeções de Esperma Intracitoplásmicas/métodos , Glândula Tireoide/imunologia , Adulto , Feminino , Humanos , Gravidez , Resultado da Gravidez , Resultado do Tratamento
14.
Nat Commun ; 11(1): 3393, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636388

RESUMO

Meiotic divisions in oocytes are extremely asymmetric and require pre- and post-anaphase-onset phases of spindle migration. The latter induces membrane protrusion that is moulded around the spindle thereby reducing cytoplasmic loss. Here, we find that depleting the NAD biosynthetic enzyme, nicotinamide phosphoribosyl-transferase (Nampt), in mouse oocytes results in markedly longer spindles and compromises asymmetry. By analysing spindle speed in live oocytes, we identify a striking and transient acceleration after anaphase-onset that is severely blunted following Nampt-depletion. Slow-moving midzones of elongated spindles induce cortical furrowing deep within the oocyte before protrusions can form, altogether resulting in larger oocyte fragments being cleaved off. Additionally, we find that Nampt-depletion lowers NAD and ATP levels and that reducing NAD using small molecule Nampt inhibitors also compromises asymmetry. These data show that rapid midzone displacement is critical for extreme asymmetry by delaying furrowing to enable protrusions to form and link metabolic status to asymmetric division.


Assuntos
Anáfase , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Oócitos/citologia , Fuso Acromático , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ciclo Celular , Segregação de Cromossomos , Citoplasma/metabolismo , Citosol/metabolismo , Feminino , Meiose , Camundongos , Microscopia Confocal , NAD/química
15.
Aging Cell ; 19(9): e13204, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729989

RESUMO

The NAD+ -dependent sirtuin deacetylase, Sirt1, regulates key transcription factors strongly implicated in ageing and lifespan. Due to potential confounding effects secondary to loss of Sirt1 function from the soma in existing whole-animal mutants, the in vivo role of Sirt1 in oocytes (oocyte-Sirt1) for female fertility remains unknown. We deleted Sirt1 specifically in growing oocytes and study how loss of oocyte-Sirt1 affects a comprehensive range of female reproductive parameters including ovarian follicular reservoir, oocyte maturation, oocyte mitochondrial abundance, oxidative stress, fertilization, embryo development and fertility during ageing. Surprisingly, eliminating this key sirtuin from growing oocytes has no effect in young females. During a 10-month-long breeding trial, however, we find that 50% of females lacking oocyte-Sirt1 become prematurely sterile between 9 and 11 months of age when 100% of wild-type females remain fertile. This is not due to an accelerated age-related decline in oocyte numbers in the absence of oocyte-Sirt1 but to reduced oocyte developmental competence or quality. Compromised oocyte quality does not impact in vivo oocyte maturation or fertilization but leads to increased oxidative stress in preimplantation embryos that inhibits cleavage divisions. Our data suggest that defects emerge in aged females lacking oocyte-Sirt1 due to concurrent age-related changes such as reduced NAD+ and sirtuin expression levels, which compromise compensatory mechanisms that can cover for Sirt1 loss in younger oocytes. In contrast to evidence that increasing Sirt1 activity delays ageing, our data provide some of the only in vivo evidence that loss of Sirt1 induces premature ageing.


Assuntos
Desenvolvimento Embrionário/genética , Fertilidade/genética , Oócitos/metabolismo , Sirtuína 1/metabolismo , Animais , Feminino , Humanos , Camundongos , Estresse Oxidativo
16.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328643

RESUMO

In mitotic cells, DNA damage induces temporary G2 arrest via inhibitory Cdk1 phosphorylation. In contrast, fully grown G2-stage oocytes readily enter M phase immediately following chemical induction of DNA damage in vitro, indicating that the canonical immediate-response G2/M DNA damage response (DDR) may be deficient. Senataxin (Setx) is involved in RNA/DNA processing and maintaining genome integrity. Here we find that mouse oocytes deleted of Setx accumulate DNA damage when exposed to oxidative stress in vitro and during aging in vivo, after which, surprisingly, they undergo G2 arrest. Moreover, fully grown wild-type oocytes undergo G2 arrest after chemotherapy-induced in vitro damage if an overnight delay is imposed following damage induction. Unexpectedly, this slow-evolving DDR is not mediated by inhibitory Cdk1 phosphorylation but by APC-Cdh1-mediated proteolysis of the Cdk1 activator, cyclin B1, secondary to increased Cdc14B-dependent APC-Cdh1 activation and reduced Emi1-dependent inhibition. Thus, oocytes are unable to respond immediately to DNA damage, but instead mount a G2/M DDR that evolves slowly and involves a phosphorylation-independent proteolytic pathway.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Multifuncionais/metabolismo , Oócitos/metabolismo , Proteólise , RNA Helicases/metabolismo , Animais , Caderinas , Células Cultivadas , DNA Helicases/deficiência , DNA Helicases/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Enzimas Multifuncionais/deficiência , Enzimas Multifuncionais/genética , RNA Helicases/deficiência , RNA Helicases/genética
17.
FASEB J ; 34(5): 6641-6653, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212196

RESUMO

Mammalian oocytes rely heavily on mitochondrial oxidative phosphorylation (OXPHOS) for generating ATP. However, mitochondria are also the primary source of damaging reactive oxygen species (ROS). Mitochondrial de-regulation, therefore, underpins poor oocyte quality associated with conditions such as obesity and aging. The mitochondrial sirtuin, Sirt3, is critical for mitochondrial respiration and redox regulation. Interestingly, however, Sirt3 knockout (Sirt3-/- ) mice do not exhibit systemic compromise under basal conditions, only doing so under stressed conditions such as high-fat diet (HFD)-induced obesity. Mouse oocytes depleted of Sirt3 exhibit increased ROS in vitro, but it is unknown whether Sirt3 is necessary for female fertility in vivo. Here, we test this for the first time by investigating ovarian follicular reserve, oocyte maturation (including detailed spindle assembly and chromosome segregation), and female fertility in Sirt3-/- females. We find that under basal conditions, young Sirt3-/- females exhibit no defects in any parameters. Surprisingly, all parameters also remain intact following HFD-induced obesity. Despite markedly increased ROS levels in HFD Sirt3-/- oocytes, ATP levels nevertheless remain normal. Our data support that ATP is sustained in vivo through increased mitochondrial mass possibly secondary to compensatory upregulation of another sirtuin, Sirt1, which has overlapping functions with Sirt3.


Assuntos
Fertilidade , Obesidade/fisiopatologia , Oócitos/fisiologia , Reserva Ovariana , Sirtuína 3/fisiologia , Magreza/fisiopatologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Mitocôndrias/metabolismo , Oócitos/citologia , Fosforilação Oxidativa , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
18.
Cell Rep ; 30(6): 1670-1681.e7, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049001

RESUMO

Reproductive aging in female mammals is an irreversible process associated with declining oocyte quality, which is the rate-limiting factor to fertility. Here, we show that this loss of oocyte quality with age accompanies declining levels of the prominent metabolic cofactor nicotinamide adenine dinucleotide (NAD+). Treatment with the NAD+ metabolic precursor nicotinamide mononucleotide (NMN) rejuvenates oocyte quality in aged animals, leading to restoration in fertility, and this can be recapitulated by transgenic overexpression of the NAD+-dependent deacylase SIRT2, though deletion of this enzyme does not impair oocyte quality. These benefits of NMN extend to the developing embryo, where supplementation reverses the adverse effect of maternal age on developmental milestones. These findings suggest that late-life restoration of NAD+ levels represents an opportunity to rescue female reproductive function in mammals.


Assuntos
Fertilidade/genética , NAD/metabolismo , Envelhecimento , Animais , Feminino , Camundongos , Camundongos Transgênicos
20.
Med Sci (Basel) ; 8(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963146

RESUMO

Here we investigate whether the presence of germinal vesicle-stage oocytes (GV- oocytes) reflects poor oocyte developmental competence (or quality). This was a prospective, non-randomised, cohort pilot-study involving 60 patients undergoing in vitro fertilization/ intracytoplasmic sperm injection for whom complete pregnancy outcome data were available. Patients in whom GV- oocytes were retrieved (GV+) at transvaginal oocyte retrieval (TVOR) were compared with those from whom no GVs were retrieved (GV-). We found that GV+ (n = 29) and GV- (n = 31) patients were similarly aged (35.4 vs. 36.4 years; p = 0.446). GV+ patients had a mean of 2.41 ± 2.03 GVs and comparable yields of MII oocytes to GV- patients (11 ± 6.88 vs. 8.26 ± 4.84; p = 0.077). Compared with GV- patients, GV+ patients had markedly lower implantation rates (11.8% vs. 30.2%; p = 0.022) as well as oocyte utilisation rates for clinical pregnancy (2.3% vs. 6.8%; p = 0.018) and live-birth (1.9% vs. 5.7%; p = 0.029). DNA damage levels measured using γH2AX immunostaining were not different in oocytes from women <36 years versus those ≥36 years (p = 0.606). Thus, patients who have GV- stage oocytes at TVOR exhibit poor oocyte quality reflected in reduced per-oocyte pregnancy success rates and uniformly high levels of oocyte DNA damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA