Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Fluoresc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836974

RESUMO

The ability of OxT and OxFl azomethines to recognize metal ions in THF solutions was investigated using UV-vis absorption techniques. Various metal ions, including Cd2+, Hg2+, Co2+, Sn2+, Cu2+, Ni2+, Zn2+ and Ag+, were tested. The absorption spectra revealed two distinct π-π* transition bands in the 273-278 nm and 330-346 nm wavelength ranges. Additionally, OxFl displayed an absorption peak at 309 nm, attributed to the fluorene group. Spectral titrations were used to study the fluorescence behavior in the presence of these metal ions. The results showed significant quenching with Co2+ and Cu2+ ions, while other metal ions had minimal effects on the fluorescence intensity. The quenching mechanism was further analyzed using the Stern-Volmer and Lehrer equations, and the binding constants ( K b fl ) were calculated using the Benesi-Hildebrand relations. The results confirm that Co2+ has a 1:2 stoichiometry and Cu2+ has a 1:1 stoichiometry, indicating the strong affinity of OxFl and OxT for these ions. The negative values of ΔG (Gibbs free energy) suggest that complex formation occurs spontaneously at room temperature.

2.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982360

RESUMO

In this paper, we studied the photophysical behavior of 2,6-bis(4-hydroxybenzylidene) cyclohexanone (BZCH) under the influence of various stimuli. The photophysical properties were correlated with different solvent parameters, such as the Kamlet-Abraham-Taft (KAT), Catalán, and Laurence solvent scales, suggesting that the behavior of BZCH is influenced by both nonspecific and specific solvent-solute interactions. The Catalán solvent dipolarity/polarizability parameters were found to have a significant role in the solvatochromic behavior, which is also confirmed by the KAT and Laurence models. The acidochromism and photochromism properties of this sample in dimethylsulfoxide and chloroform solutions were also investigated. The compound showed reversible acidochromism after the addition of dilute NaOH/HCl solutions, accompanied by a change in color and the appearance of a new absorption band (514 nm). The photochemical behavior was also examined by irradiating BZCH solutions with both 254 and 365 nm light.


Assuntos
Cicloexanonas , Dimetil Sulfóxido , Solventes/química , Soluções
3.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361962

RESUMO

Among the multitude of polymers with carbon-based macromolecular architectures that easily ignite in certain applications where short circuits may occur, polyimide has evolved as a class of polymers with high thermal stability while exhibiting intrinsic flame retardancy at elevated temperatures via a char-forming mechanism. However, high amounts of aromatic rings in the macromolecular backbone are required for these results, which may affect other properties such as film-forming capacity or mechanical properties; thus, much work has been done to structurally derivatize or make hybrid polyimide systems. In this respect, flexible polyimide films (PI(1-4)) containing bulky 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) units have been developed starting from commercial dianhydrides and an aromatic diamine containing two side chain bulky DOPO groups. The chemical structure of PI(1-4)) was characterized by 1H NMR, 13C NMR and 31P NMR spectroscopy. The optical properties, including absorption and luminescence spectra of these polymers, were analyzed. All polyimides containing DOPO derivatives emitted blue light with an emission maxima in the range of 340-445 nm, in solvents such as N,N-dimethylformamide, N-methyl-2-pyrrolidone, chloroform, and N,N-dimethylacetamide, while green light emission (λem = 487 nm for PI-4) was evidenced in a thin-film state. The thermal decomposition mechanism and flame-retardant behavior of the resulting materials were investigated by pyrolysis-gas-chromatography spectrometry (Py-GC), scanning electron microscopy (SEM), EDX maps and FTIR spectroscopy. The residues resulting from the TGA experiments were examined by SEM microscopy images and FTIR spectra to understand the pyrolysis mechanism.


Assuntos
Retardadores de Chama , Retardadores de Chama/análise , Cromatografia Gasosa-Espectrometria de Massas , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Ressonância Magnética
4.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365732

RESUMO

In this work, pure TiO2 and Cu (0.5, 1, 2%)-doped TiO2 composites prepared by electrospinning technique followed by calcination at 900 °C, and having high pseudocapacitive and dielectric characteristics were reported. These nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, and dynamic water sorption vapor measurements. The structural characterization of these nanostructures highlighted good crystallinity including only the rutile phase. The electrochemical characteristics were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements, which were performed in a KOH electrolyte solution. Among the Cu-doped TiO2 nanostructures that were prepared, the one containing 0.5% Cu exhibited superior electrochemical properties, including high specific gravimetric capacitance of 1183 F·g-1, specific capacitance of 664 F·g-1, energy density of 45.20 Wh·kg-1, high power density of 723.14 W·kg-1, and capacitance retention of about 94% after 100 cycles. The dielectric investigation shows good dielectric properties for all materials, where the dielectric constant and the dielectric loss decreased with the frequency increase. Thus, all the interconnected studies proved that these new materials show manifold ability and real applicative potential as pseudocapacitors and high-performance dielectrics. Future work and perspectives are anticipated for characterizing electrochemical and dielectric properties for materials including larger amounts of Cu dopant.

5.
J Environ Manage ; 316: 115317, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658261

RESUMO

Titanium dioxide (TiO2)-based nanofibers doped with samarium (Sm3+) and erbium (Er3+) at doping levels tuned in the range of 0.05-1.0% were prepared by the electrospinning-calcination method. The produced materials were well characterized by X-ray diffraction, SEM, EDX, and UV-vis diffuse reflectance spectroscopy. These one-dimensional nanostructures showed a crystalline structure with values of fiber diameters values between 60 and 100 nm. The best catalyst sample of this study was formulated as TiO2:Sm (0.1%) and sintered at 600 °C. And, it was employed to intensify the photocatalytic process under visible-light irradiation. Likewise, the chemometric approach was applied to optimize the process. The results revealed that the rate constant for the photo-degradation of a cationic organic pollutant was significantly improved (k = 3.496 × 10-1 min-1). In terms of the reaction half-life, the intensification and optimization of the process led to a decrease in the half-life of the reaction from 68 to 2 min. And, these are outstanding findings for the photo-degradation process under visible-light irradiation. In addition, the total organic carbon (TOC) removal efficiencies were found to be 69.95% and 72.30% for the mineralization of MB and CIP, respectively, after a 360 min reaction time, which are significant results. Moreover, this material demonstrated remarkable photocatalytic activity for the degradation of ciprofloxacin (CIP) with a 99.6% removal efficiency and a rate constant of 4.292 × 10-1 min-1. Finally, the stability and reusability of this catalyst were demonstrated during five repetitive cycles of the CIP photodegradation.


Assuntos
Nanofibras , Catálise , Luz , Nanofibras/química , Fotólise , Titânio/química
6.
J Environ Manage ; 311: 114817, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35276562

RESUMO

Growing technologies, increasing population and environmental pollution lead to severe contamination of water and require advanced water treatment technologies. These aspects lead to the need to purify water with advanced smart materials. This paper reviews the recent advances (during the last 5 years) in photocatalytic composite membranes used for water treatment. For this purpose, the authors have reviewed the main materials used in the development of (photocatalytic membranes) PMs, environmental and operational factors affecting the performance of photocatalytic membranes, and the latest developments and applications of PMs in water purifications. The composite photocatalytic membranes show good performance in the removal and degradation of pollutants from water.

7.
Chempluschem ; 87(2): e202100462, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104052

RESUMO

Bioinspired peptides are attractive biomolecules which can improve our understanding of self-assembly processes for rational design of new peptide-based materials. Herein, a new amidated peptide FRSAPFIE (FRS), based on a sequence present in human collagen, was synthesized, characterized by mass spectrometry and subjected to self-assembling investigations. The optimal conditions for self-assembly were disclosed by dynamic light scattering at 32 °C and a peptide concentration of 0.51 %. In addition, AFM studies revealed ellipsoidal FRS shapes with an area between 0.8 and 3.1 µm2 . The ability of self-assembly was also proved using FAD dye as extrinsic fluorescence reporter. According to the theoretical analysis, the FRS peptide tends to form a bundle-type association, with a type of fibrillary tangles particle. Altogether, our findings address new challenges regarding the FRS peptide which can be used in further self-assembly studies to design biocompatible drug-delivery platforms.


Assuntos
Biomimética , Colágeno , Colágeno/química , Sistemas de Liberação de Medicamentos , Humanos , Peptídeos/química
8.
Nanomaterials (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947686

RESUMO

In this paper, hydroalcoholic solutions of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba were used in combination with poly (vinyl alcohol) with the aim of developing novel poly (vinyl alcohol)-based nanofiber mats loaded with phytotherapeutic agents via the electrospinning technique. The chemical structure and morphology of the polymeric nanofibers were investigated using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The addition of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba extracts to the pure polyvinyl alcohol fibers led to changes in the morphology of the fibers and a reduction in the fibers' diameter, from 0.1798 µm in the case of pure polyvinyl alcohol to 0.1672, 0.1425, and 0.1369 µm in the case of polyvinyl alcohol loaded with Thymus vulgaris, Salvia officinalis folium, and Hyperici herba, respectively. The adapted Folin-Ciocalteu (FC) method, which was used to determine the total phenolic contents, revealed that the samples of PVA-Hyperici herba and PVA-Thymus vulgaris had the highest phenol contents, at 13.25 µgGAE/mL and 12.66 µgGAE/mL, respectively. Dynamic water vapor measurements were used in order to investigate the moisture sorption and desorption behavior of the developed electrospun materials. The antimicrobial behavior of these products was also evaluated. Disk diffusion assay studies with Escherichia coli, Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus were conducted on the developed nanofibers in order to quantify their phytotherapeutic potential.

9.
Nanomaterials (Basel) ; 10(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731528

RESUMO

New molybdenum trioxide-incorporated ZnO materials were prepared through the electrospinning method and then calcination at 500 °C, for 2 h. The obtained electrospun ZnO:MoO3 hybrid materials were characterized by X-ray diffraction, scanning and transmission electron microscopies, ultraviolet (UV)-diffuse reflectance, UV-visible (UV-vis) absorption, and photoluminescence techniques. It was observed that the presence of MoO3 as loading material in pure ZnO matrix induces a small blue shift in the absorption band maxima (from 382 to 371 nm) and the emission peaks are shifted to shorter wavelengths, as compared to pure ZnO. Also, a slight decrease in the optical band gap energy of ZnO:MoO3 was registered after MoO3 incorporation. The photocatalytic performance of pure ZnO and ZnO:MoO3 was assessed in the degradation of rhodamine B (RhB) dye with an initial concentration of 5 mg/L, under visible light irradiation. A doubling of the degradation efficiency of the ZnO:MoO3 sample (3.26% of the atomic molar ratio of Mo/Zn) as compared to pure ZnO was obtained. The values of the reaction rate constants were found to be 0.0480 h-1 for ZnO, and 0.1072 h-1 for ZnO:MoO3, respectively.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 215: 371-380, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852285

RESUMO

The sensitivity and selectivity properties of three phenylquinoxaline derivatives to different metal ions were investigated by absorption and fluorescence spectroscopy. The absorption and fluorescence responses of the phenylquinoxaline derivatives were examined towards the following metal ions Ag+, Mg2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, in THF solution. All investigated samples exhibit sensitivity and selectivity to Ag+, Co2+ and Cu2+ ions compared to other metal ions (Mn+ = Mg2+, Ni2+, Zn2+, Cd2+ and Hg2+). The gradual addition of Ag+, Co2+ and Cu2+ ions to a Q-Ox sample solution generates new absorption bands (with maxima at 244, 675 and 294 nm, in presence of the Ag+, Co2+ and Cu2+ ions, respectively) while the emission intensities were weakly quenched, except in presence of Ag+ ions, when the emission was almost completely quenched (quenching efficiency at 426 nm, (I0 - I) / I0 × 100% = 91%). Absorption and fluorescence results show the formation of 1:2 metal complexes with Ag+ ions and 1:1 stoichiometry for a complexation between Q-Ox and Co2+ or Cu2+ ions. The following characteristics of these phenylquinoxaline derivatives have been calculated and discussed: the effects of the interfering ions, the binding constants and the detection limit of Ag+, Co2+ and Cu2+ ions.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 209: 234-240, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30414571

RESUMO

Latest advances in technology and the growing amount of experimental and business data have increased the number of users accessing on-line tools dedicated to quickly visualize and analyse large data sets. This paper describes the development and functionality of a new interactive cloud computing based plotting tool (GiPlot - Google-based Interactive Plot) easy-to-use for universal data. It has interactive features that facilitate data share and interpretation, and selection of specific data suitable for further uses and detailed studies. It also allows quick and step-by-step visualizations of the impact of various experimental conditions on spectral data sets. For a detailed illustration of the features of this interactive plotting tool, we have used mainly spectral data for a given solute dissolved in mixed solvents and for changes in the absorption and/or fluorescence properties of a solute solution in the presence of different chemical stimuli. The most important features and functionalities of this new tool have also been summarized and suggestively highlighted through a short collection of video tutorials containing many examples, developed by the authors of this paper as a support for both the tool and this paper.

12.
J Fluoresc ; 28(5): 1217-1224, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30145782

RESUMO

The photophysical properties of the three 1,3,4-oxadiazole derivatives containing fluorene (Ox-FL); fluorene and phenolphtaleine (Ox-FL-FF); or fluorene and bisphenol A (Ox-FL-BPA) moieties in the main chain were investigated by the fluorescence and absorption spectroscopy in different solvents and in the solid state. The electronic absorption spectra included a strong absorption band located in the 270-395 nm region, with a maxima around at 302 nm. The fluorescence excitation spectra were also characterized by one broad band, appearing in the wavelength range of 220-340 nm. All samples displayed the emission bands around 356-373 nm and exhibit high quantum yields ranged from 31.61 to 90.77%, in chloroform solution. The sensitivity of the emission spectra on medium characteristics (polarity, acidity and basicity) were evaluated by using the Catalan solvent scale and the fluorescence titration with a dilute acid solution.

13.
J Fluoresc ; 26(5): 1617-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27324952

RESUMO

1,3,4-Oxadiazole derivatives-organic materials are an interesting and continuously developing area of research. This review describes some optical properties and highlights the current applications of these compounds in biomedical and optoelectronic fields. The relationships between polymer structures, environmental factors and optical properties (absorption and fluorescence) of several selected and relevant l,3,4-oxadiazole-containing molecules were presented in this review. These aspects were analyzed in various pure solvents and microheterogeneous media (mixed solvents). Also, the selectivity and sensitivity of some 1,3,4-oxadiazole derivatives-organic materials for different metal ions were discussed and evaluated by using spectral techniques. Finally, some important photophysical characteristics of 34 series of organic materials containing -1,3,4-oxadiazole rings, were collected in a table.

14.
J Fluoresc ; 26(1): 217-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518577

RESUMO

Optical characteristics of some fluorinated poly(1,3,4-oxadiazole-ether)s in presence of SnO2, NiO and SnO2/NiO mixed-oxide nanoparticles (NPs) was investigated. The interactions between polymers and metal oxide NPs were studied by steady-state UV-Vis absorption and fluorescence spectroscopy techniques. The absorption and fluorescence signals of all investigated polymers was modified by presence of both pure and mixed-oxide nanoparticles. The moderate values of Stern-Volmer quenching constant and non-linear trend of Scott plot indicate the less affinity between metal oxide NPs and polymers. The solvation behavior of some fluorinated poly(1,3,4-oxadiazole-ether)s in chloroform-N,N-dimethylformamide and N,N-dimethylformamide-dimethylsulfoxide mixtures was discussed.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 134: 218-24, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25014644

RESUMO

Absorption and fluorescence spectra of a polyquinoneimine, PQI, built on 1,4-dihydroxyanthraquinone and a siloxane diamine, 1,3-bis(amino-phenylene-ester-methylene)tetramethyldisiloxane, have been investigated in solvents of different polarities. The effect of solvents on the spectral properties was investigated using Lippert-Mataga and Bakhshiev polarity functions and Catalán's multiple linear regression approach. Absorption and fluorescence spectra in studied solvents exhibit hypsochromic and bathochromic shifts, respectively. The polarity of the solvent was the main parameter which changes the spectral properties of PQI. Also, the binary mixtures of chloroform with methanol and dimethyl sulfoxide were used to analyze the intermolecular interactions and preferential solvation. The preferential solvation parameters (local mole fraction (X2(L)), excess function (δs2) and preferential solvation constant (KPS)) were calculated from spectral data and discussed as a function of cosolvent content. The values of quantum yield, decreased linearly with increasing solvent polarity (for non-polar and polar solvents).


Assuntos
Antraquinonas/química , Siloxanas/química , Solventes/química , Dimetil Sulfóxido/química , Espectroscopia de Ressonância Magnética , Metanol/química , Processos Fotoquímicos , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Tolueno/química
16.
Int J Mol Sci ; 12(9): 6176-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016652

RESUMO

Novel polythioetherimides bearing azobenzene moieties were synthesized from azobismaleimides and bis-2-mercaptoethylether. Kinetics of trans-cis photoisomerization and of thermal conversion of cis to trans isomeric forms were investigated in both polymer solution and poly(methyl methacrylate) doped films using electronic absorption spectroscopy. Thermal recovery kinetics is well described by a two-exponential relation both in solution and polymer matrix, while that of low molecular weight azobismaleimide fit a first-order equation. The photoinduced cis-trans isomerization by visible light of azobenzene chromophores was examined in solution and in polymer films. The rate of photoinduced recovery was very high for azobismaleimides.


Assuntos
Compostos Azo/química , Luz , Maleimidas/química , Processos Fotoquímicos/efeitos da radiação , Compostos Azo/síntese química , Isomerismo , Cinética , Maleimidas/síntese química , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA