Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831751

RESUMO

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Assuntos
Dieta Hiperlipídica , Ácido Láctico , Obesidade , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Microambiente Tumoral , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética
2.
Cell Rep ; 42(4): 112338, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027295

RESUMO

During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA11a, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Processamento Alternativo/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo
3.
Cell Rep ; 42(3): 112202, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36871220

RESUMO

In developing embryos, specific cell populations are often removed to remodel tissue architecture for organogenesis. During urinary tract development, an epithelial duct called the common nephric duct (CND) gets shortened and eventually eliminated to remodel the entry point of the ureter into the bladder. Here we show that non-professional efferocytosis (the process in which epithelial cells engulf apoptotic bodies) is the main mechanism that contributes to CND shortening. Combining biological metrics and computational modeling, we show that efferocytosis with actomyosin contractility are essential factors that drive the CND shortening without compromising the ureter-bladder structural connection. The disruption of either apoptosis, non-professional efferocytosis, or actomyosin results in contractile tension reduction and deficient CND shortening. Actomyosin activity helps to maintain tissue architecture while non-professional efferocytosis removes cellular volume. Together our results demonstrate that non-professional efferocytosis with actomyosin contractility are important morphogenetic factors controlling CND morphogenesis.


Assuntos
Actomiosina , Células Epiteliais , Fagocitose , Epitélio , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA