Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Biophys Res Commun ; 690: 149272, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992523

RESUMO

Cardiomyocytes (CMs) have little regenerative capacity. After myocardial infarction (MI), scar formation and myocardial remodeling proceed in the infarct and non-infarct areas, respectively, leading to heart failure (HF). Prolonged activation of cardiac fibroblasts (CFs) and inflammatory cells may contribute to this process; however, therapies targeting these cell types remain lacking. Cardiac reprogramming converts CFs into induced CMs, reduces fibrosis, and improves cardiac function in chronic MI through the overexpression of Mef2c/Gata4/Tbx5/Hand2 (MGTH). However, whether cardiac reprogramming reduces inflammation in infarcted hearts remains unclear. Moreover, the mechanism through which MGTH overexpression in CFs affects inflammatory cells remains unknown. Here, we showed that inflammation persists in the myocardium until three months after MI, which can be reversed with cardiac reprogramming. Single-cell RNA sequencing demonstrated that CFs expressed pro-inflammatory genes and exhibited strong intercellular communication with inflammatory cells, including macrophages, in chronic MI. Cardiac reprogramming suppressed the inflammatory profiles of CFs and reduced the relative ratios and pro-inflammatory signatures of cardiac macrophages. Moreover, fluorescence-activated cell sorting analysis (FACS) revealed that cardiac reprogramming reduced the number of chemokine receptor type 2 (CCR2)-positive inflammatory macrophages in the non-infarct areas in chronic MI, thereby restoring myocardial remodeling. Thus, cardiac reprogramming reduced the number of inflammatory macrophages to exacerbate cardiac function after MI.


Assuntos
Infarto do Miocárdio , Humanos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Fibroblastos/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 43(9): 1668-1683, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37534464

RESUMO

BACKGROUND: The mechanisms underlying pulmonary hypertension (PH) remain largely unknown; further, why advanced vascular remodeling preferentially occurs in arterioles is yet to be answered. VEGF (vascular endothelial growth factor) regulates angiogenesis through Flk1 (fetal liver kinase 1) and Flt1 (fms-like tyrosine kinase 1) on endothelial cells (ECs), which may be related to PH pathogenesis. However, spatiotemporal expression patterns of Flk1 and Flt1 in the pulmonary vascular system and the role of endothelial Flk1 in PH development remain poorly understood. METHODS: We analyzed multiple reporter mice, including Flk1-GFP (green fluorescent protein) bacterial artificial chromosome transgenic (Tg), Flt1-DsRed bacterial artificial chromosome Tg, and Flk1-GFP/Flt1-DsRed double Tg mice, to determine the spatiotemporal expression of Flk1 and Flt1 in hypoxia-induced PH. We also used Cdh5CreERT2/Flk1f/f/Tomato (Flk1-KO [knockout]) mice to induce EC-specific Flk1 deletion and lineage tracing in chronic hypoxia. RESULTS: Flk1 was specifically expressed in the ECs of small pulmonary vessels, including arterioles. Conversely, Flt1 was more broadly expressed in the ECs of large- to small-sized vessels in adult mouse lungs. Intriguingly, Flk1+ ECs were transiently increased in hypoxia with proliferation, whereas Flt1 expression was unchanged. Flk1-KO mice did not exhibit pulmonary vascular remodeling nor PH in normoxia; however, the arteriolar ECs changed to a cuboidal shape with protrusion. In hypoxia, Flk1 deletion exacerbated EC dysfunction and reduced their number via apoptosis. Additionally, Flk1 deletion promoted medial thickening and neointimal formation in arterioles and worsened PH. Mechanistically, lineage tracing revealed that neointimal cells were derived from Flk1-KO ECs. Moreover, RNA sequencing in pulmonary ECs demonstrated that Flk1 deletion and hypoxia synergistically activated multiple pathways, including cell cycle, senescence/apoptosis, and cytokine/growth factor, concomitant with suppression of cell adhesion and angiogenesis, to promote vascular remodeling. CONCLUSIONS: Flk1 and Flt1 were differentially expressed in pulmonary ECs. Flk1 deficiency and hypoxia jointly dysregulated arteriolar ECs to promote vascular remodeling. Thus, dysfunction of Flk1+ ECs may contribute to the pathogenesis of advanced vascular remodeling in pulmonary arterioles.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Animais , Camundongos , Células Endoteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Stem Cell Reports ; 18(6): 1274-1283, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315521

RESUMO

Cardiac transcription factors (TFs) directly reprogram fibroblasts into induced cardiomyocytes (iCMs), where MEF2C acts as a pioneer factor with GATA4 and TBX5 (GT). However, the generation of functional and mature iCMs is inefficient, and the molecular mechanisms underlying this process remain largely unknown. Here, we found that the overexpression of transcriptionally activated MEF2C via fusion of the powerful MYOD transactivation domain combined with GT increased the generation of beating iCMs by 30-fold. Activated MEF2C with GT generated iCMs that were transcriptionally, structurally, and functionally more mature than those generated by native MEF2C with GT. Mechanistically, activated MEF2C recruited p300 and multiple cardiogenic TFs to cardiac loci to induce chromatin remodeling. In contrast, p300 inhibition suppressed cardiac gene expression, inhibited iCM maturation, and decreased the beating iCM numbers. Splicing isoforms of MEF2C with similar transcriptional activities did not promote functional iCM generation. Thus, MEF2C/p300-mediated epigenetic remodeling promotes iCM maturation.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição MEF2 , Miócitos Cardíacos , Fatores de Transcrição de p300-CBP , Epigênese Genética , Epigenômica , Fibroblastos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição de p300-CBP/genética
5.
CEN Case Rep ; 11(1): 84-89, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34379303

RESUMO

We report a case of acute ischemic nephropathy in a patient with severe renal artery stenosis and bradycardia due to sick sinus syndrome. An 83-year-old Japanese woman with a history of hypertension was diagnosed with sick sinus syndrome and scheduled for pacemaker implantation. Four days prior to admission for the procedure, she experienced sudden-onset severe right flank pain that persisted for 1 day. On the day of admission, her serum creatinine level increased from 1.35 mg/dL, measured 2 weeks earlier, to 7.04 mg/dL. Laboratory examinations showed elevated C-reactive protein and lactate dehydrogenase levels. A computed tomography scan showed a severely atrophied left kidney, suggesting that it was non-functioning. Doppler ultrasonography of the right renal artery showed an extended acceleration time, suggesting proximal stenosis. Magnetic resonance imaging showed no enhancement in the proximal portions of the right renal artery, consistent with severe stenosis or occlusion. The patient developed severe bradycardia with lightheadedness; as a result, pacemaker implantation was performed on post-admission day 7. On day 10, digital subtraction angiography revealed diffuse severe stenosis of the right renal artery; intravascular ultrasonography suggested plaque rupture. Percutaneous transluminal renal angioplasty (PTRA) was performed and a drug-eluting stent was placed. On day 11, hemodialysis was performed owing to deteriorating renal function. The patient's renal function dramatically improved shortly thereafter. This case highlights the importance of PTRA for select patients, as it can potentially save some patients from chronic dialysis, and outlines the possible implications of bradycardia in the pathogenesis of ischemic nephropathy.


Assuntos
Stents Farmacológicos , Placa Aterosclerótica , Obstrução da Artéria Renal , Idoso de 80 Anos ou mais , Angioplastia , Bradicardia/diagnóstico , Bradicardia/etiologia , Bradicardia/terapia , Constrição Patológica , Feminino , Humanos , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Rim/fisiologia , Masculino , Artéria Renal/diagnóstico por imagem , Obstrução da Artéria Renal/diagnóstico , Obstrução da Artéria Renal/diagnóstico por imagem , Síndrome do Nó Sinusal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA