Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Res ; 364(3): 585-597, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26899250

RESUMO

Microfold (M) cells in the follicle-associated epithelium (FAE) of Peyer's patches contribute to the mucosal immune response by the transcytosis of microorganisms. The mechanism by which M cells take up microorganisms, and the functional proteins by which they do this, are not clear. In order to explore one such protein, we developed a 2H5-F3 monoclonal antibody (2H5-F3 mAb) through its binding to bovine M cells, and identified the antibody reactive molecule as cyclophilin A (Cyp-A). The localization patterns of Cyp-A were very similar to the localization pattern of cytokeratin (CK) 18-positive M cells. Cyp-A was identified at the luminal surface of CK18-positive M cells in bovine jejunal and ileal FAE. The membranous localization of Cyp-A in the bovine intestinal cell line (BIE cells) increased as cells differentiated toward M cells, as determined by flow cytometry analysis. Additionally, BIE cells released Cyp-A to the extracellular space and the differentiation of BIE cells to M cells increased the secretion of Cyp-A, as determined by western blotting. Accordingly, Cyp-A may be localized in M cells in the small intestinal epithelium of cattle. The rise of the membranous localization and secretion of Cyp-A by differentiation toward M cells indicates that Cyp-A has an important role in the function of M cells. While Cyp-A of the M cell membrane may contribute to the uptake of viruses with peptidyl-prolyl cis-trans isomerase activity, in the extracellular space Cyp-A may work as a chemokine and contribute to the distribution of immuno-competent cells.


Assuntos
Ciclofilina A/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Biomarcadores/metabolismo , Bovinos , Diferenciação Celular , Cromatografia Líquida , Colo/citologia , Duodeno/citologia , Íleo/citologia , Imuno-Histoquímica , Imunoprecipitação , Jejuno/citologia , Masculino , Camundongos Endogâmicos BALB C , Microvilosidades/metabolismo , Nasofaringe/citologia , Peptídeos/análise , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/ultraestrutura , Espectrometria de Massas em Tandem
2.
Am J Pathol ; 179(3): 1301-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763679

RESUMO

Transmissible spongiform encephalopathies are fatal neurodegenerative diseases. Infection by the oral route is assumed to be important, although its pathogenesis is not understood. Using prion protein (PrP) knockout mice, we investigated the sequence of events during the invasion of orally administered PrPs through the intestinal mucosa and the spread into lymphoid tissues and the peripheral nervous system. Orally administered PrPs were incorporated by intestinal epitheliocytes in the follicle-associated epithelium and villi within 1 hour. PrP-positive cells accumulated in the subfollicle region of Peyer's patches a few hours thereafter. PrP-positive cells spread toward the mesenteric lymph nodes and spleen after the accumulation of PrPs in the Peyer's patches. The number of PrP molecules in the mesenteric lymph nodes and spleen peaked at 2 days and 6 days after inoculation, respectively. The epitheliocytes in the follicle-associated epithelium incorporating PrPs were annexin V-positive microfold cells and PrP-positive cells in Peyer's patches and spleen were CD11b-positive and CD14-positive macrophages. Additionally, PrP-positive cells in Peyer's patches and spleen were detected in the vicinity of peripheral nerve fibers in the early stages of infection. These results indicate that orally delivered PrPs were incorporated by microfold cells promptly after challenge and that macrophages might act as a transporter of incorporated PrPs from the Peyer's patches to other lymphoid tissues and the peripheral nervous system.


Assuntos
Encéfalo/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Príons/farmacocinética , Administração Oral , Animais , Imuno-Histoquímica , Intestino Delgado/metabolismo , Linfonodos/metabolismo , Masculino , Mesentério/metabolismo , Camundongos , Camundongos Knockout , Nódulos Linfáticos Agregados/patologia , Doenças Priônicas/etiologia , Príons/administração & dosagem , Baço/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 300(3): G442-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193527

RESUMO

Microfold (M) cells in the follicle-associated epithelium (FAE) of Peyer's patches have an important role in mucosal immune responses. A primary difficulty for investigations of bovine M cells is the lack of a specific molecular marker. To identify such a marker, we investigated the expression of several kinds of intermediate filament proteins using calf Peyer's patches. The expression patterns of cytokeratin (CK) 18 in jejunal and ileal FAE were very similar to the localization pattern of M cells recognized by scanning electron microscopy. Mirror sections revealed that jejunal CK18-positive cells had irregular and sparse microvilli, as well as pocket-like structures containing lymphocytes, typical morphological characteristic of M cells. However, CK18-negative cells had regular and dense microvilli on their surface, typical of the morphology of enterocytes. In contrast, CK20 immunoreactivity was detected in almost all villous epithelial cells and CK18-negative cells in the FAE. CK18-positive proliferating transit-amplifying cells in the crypt exchanged CK18 for CK20 above the mouth of the crypt and after moving to the villi; however, CK18-positive M cells in the crypt continued their expression of CK18 during movement to the FAE region. Terminal deoxynucleotidyl-transferase-mediated deoxyuridine-triphosphate-biotin nick-end labeling-positive apoptotic cells were specifically detected at the apical region of villi and FAE in the jejunum and ileum, and all were also stained for CK20. These data indicate that CK18 may be a molecular marker for bovine M cells in FAE and that M cells may transdifferentiate to CK20-positive enterocytes and die by apoptosis in the apex of the FAE.


Assuntos
Enterócitos/metabolismo , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Queratina-18/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Fatores Etários , Animais , Apoptose , Biomarcadores/metabolismo , Bovinos , Proliferação de Células , Transdiferenciação Celular , Colo/metabolismo , Duodeno/metabolismo , Enterócitos/ultraestrutura , Íleo/citologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Mucosa Intestinal/citologia , Jejuno/citologia , Queratina-20/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Microvilosidades/metabolismo , Nódulos Linfáticos Agregados/citologia
4.
J Virol ; 84(23): 12285-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861256

RESUMO

Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.


Assuntos
Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Encefalopatia Espongiforme Bovina/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/virologia , Príons/imunologia , Transcitose/imunologia , Animais , Bovinos , Linhagem Celular , Immunoblotting , Interleucina-2 , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microesferas
5.
Endocrinology ; 151(10): 4776-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20685881

RESUMO

Serotonin is synthesized by two distinct tryptophan hydroxylases, one in the brain and one in the periphery. The latter is known to be unable to cross the blood-brain barrier. These two serotonin systems have apparently independent functions, although the functions of peripheral serotonin have yet to be fully elucidated. In this study, we have investigated the physiological effect of peripheral serotonin on the concentrations of metabolites in the circulation and in the liver. After fasting, mice were ip injected with 1 mg serotonin. The plasma glucose concentration was significantly elevated between 60 and 270 min after the injection. In contrast, plasma triglyceride, cholesterol, and nonesterified fatty acid concentrations were decreased. The hepatic glycogen synthesis and concentrations were significantly higher at 240 min. At the same time, the hepatic triglyceride content was significantly lower than the basal levels noted before the serotonin injection, whereas the hepatic cholesterol content was significantly higher by 60 min after the injection. Furthermore, serotonin stimulated the contraction of the gallbladder and the excretion of bile. After the serotonin injection, there was a significant induction of apical sodium-dependent bile acid transporter expression, resulting in a decrease in the concentration of bile acids in the feces. Additionally, data are presented to show that the functions of serotonin are mediated through diverse serotonin receptor subtypes. These data indicate that peripheral serotonin accelerates the metabolism of lipid by increasing the concentration of bile acids in circulation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Serotonina/farmacologia , Animais , Ácidos e Sais Biliares/sangue , Relação Dose-Resposta a Droga , Jejum/sangue , Jejum/metabolismo , Vesícula Biliar/efeitos dos fármacos , Vesícula Biliar/metabolismo , Vesícula Biliar/fisiologia , Glucose/metabolismo , Glicogênio/metabolismo , Íleo/efeitos dos fármacos , Íleo/metabolismo , Injeções Intraperitoneais , Insulina/sangue , Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/administração & dosagem , Serotonina/sangue , Serotonina/metabolismo
6.
Histochem Cell Biol ; 133(1): 125-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19830445

RESUMO

Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.


Assuntos
Linhagem Celular , Células Epiteliais/citologia , Intestino Delgado/citologia , Animais , Bovinos , Diferenciação Celular , Proliferação de Células , Células Epiteliais/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA