Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MAbs ; 10(3): 444-452, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29333938

RESUMO

Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFß1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFß1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFß1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFß1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies.


Assuntos
Afinidade de Anticorpos , Imunoglobulina G/química , Engenharia de Proteínas , Anticorpos de Cadeia Única/química , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Células A549 , Cristalografia por Raios X , Humanos , Imunoglobulina G/genética , Domínios Proteicos , Anticorpos de Cadeia Única/genética , Fator de Crescimento Transformador beta1/química
2.
Protein Sci ; 24(9): 1401-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26044846

RESUMO

Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.


Assuntos
Cisteína/química , alfa-Galactosidase/química , alfa-Galactosidase/genética , Dissulfetos/química , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida/métodos , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Relação Estrutura-Atividade , alfa-Galactosidase/metabolismo
3.
Endocrinology ; 154(3): 1373-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23389953

RESUMO

Thyrogen (thyrotropin alfa for injection), recombinant human TSH (rhTSH), has been successfully used to enhance diagnostic radioiodine scanning and thyroglobulin testing in the follow-up of patients with thyroid cancer and as an adjunctive treatment for radioiodine thyroid remnant ablation. However, the short half-life of rhTSH in the circulation requires a multidose regimen. We developed novel sialic acid-mediated and galactose-mediated conjugation chemistries for targeting polyethylene glycol (PEG) to the three N-linked glycosylation sites on the protein, to prolong plasma half-life by eliminating kidney filtration and potential carbohydrate-mediated clearance. Conjugates of different PEG sizes and copy numbers were screened for reaction yield, TSH receptor binding, and murine phamacokinetics/pharmacodynamics studies. The best performing of these products, a 40-kDa mono-PEGylated sialic acid-mediated conjugate, exhibited a 3.5-fold longer duration of action than rhTSH in rats, as a 5-fold lower affinity was more than compensated by a 23-fold extension of circulation half-life. Biochemical characterization confirmed conjugation through the sialic acids. Correlation of PEG distribution on the three N-linked glycosylation sites and the PEG effect on receptor binding supported the previously reported structure-function relationship of rhTSH glycosylation. This long-acting rhTSH has the potential to significantly improve patient convenience and provider flexibility while reducing potential side effects associated with a sudden elevation of serum TSH.


Assuntos
Tireotropina/química , Tireotropina/farmacologia , Animais , Carboidratos/química , Feminino , Glicosilação , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Moleculares , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Receptores da Tireotropina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Ácidos Siálicos/química , Tireotropina/análogos & derivados , Tireotropina/farmacocinética
4.
Bioconjug Chem ; 24(3): 408-18, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23350694

RESUMO

Recombinant human thyroid stimulating hormone (rhTSH or Thyrogen) has been approved for thyroid cancer diagnostics and treatment under a multidose regimen due to its short circulating half-life. To reduce dosing frequency, PEGylation strategies were explored to increase the duration of action of rhTSH. Lysine and N-terminal PEGylation resulted in heterogeneous product profiles with 40% or lower reaction yields of monoPEGylated products. Eleven cysteine mutants were designed based on a structure model of the TSH-TSH receptor (TSHR) complex to create unique conjugation sites on both α and ß subunits for site-specific conjugation. Sequential screening of mutant expression level, oligomerization tendency, and conjugation efficiency resulted in the identification of the αG22C rhTSH mutant for stable expression and scale-up PEGylation. The introduced cysteine in the αG22C rhTSH mutant was partially blocked when isolated from conditioned media and could only be effectively PEGylated after mild reduction with cysteine. This produced a higher reaction yield, ~85%, for the monoPEGylated product. Although the mutation had no effect on receptor binding, PEGylation of αG22C rhTSH led to a PEG size-dependent decrease in receptor binding. Nevertheless, the 40 kDa PEG αG22C rhTSH showed a prolonged duration of action compared to rhTSH in a rat pharmacodynamics model. Reverse-phase HPLC and N-terminal sequencing experiments confirmed site-specific modification at the engineered Cys 22 position on the α-subunit. This work is another demonstration of successful PEGylation of a cysteine-knot protein by an engineered cysteine mutation.


Assuntos
Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Tireotropina/administração & dosagem , Tireotropina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Tireotropina/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA