Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(12): 6214-22, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23550952

RESUMO

This study focuses on the effects of fulvic acid (FA) on uranium(VI) sorption kinetics to a silica sand. Using a tritium-labeled FA in batch experiments made it possible to investigate sorption rates over a wide range of environmentally relevant FA concentrations (0.37-23 mg L(-1) TOC). Equilibrium speciation calculations were coupled with an evaluation of U(VI) and FA sorption rates based on characteristic times. This allowed us to suggest plausible sorption mechanisms as a function of solution conditions (e.g., pH, U(VI)/FA/surface site ratios). Our results indicate that U(VI) sorption onto silica sand can be either slower or faster in the presence of FA compared to a ligand-free system. This suggests a shift in the underlying mechanisms of FA effects on U(VI) sorption, from competitive sorption to influences of U(VI)-FA complexes, in the same system. Changes in metal sorption rates depend on the relative concentrations of metals, organic ligands, and mineral surface sites. Hence, these results elucidate the sometimes conflicting information in the literature about the influence of organic matter on metal sorption rates. Furthermore, they provide guidance for the selection of appropriate sorption equilibration times for experiments that are designed to determine metal distribution coefficients (Kd values) under equilibrium conditions.


Assuntos
Benzopiranos/química , Urânio/química , Adsorção , Cinética
2.
J Contam Hydrol ; 148: 51-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23399383

RESUMO

Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical.


Assuntos
Sedimentos Geológicos/química , Água Subterrânea/química , Urânio/química , Poluentes Radioativos da Água/química , Monitoramento Ambiental , Modelos Teóricos , Tamanho da Partícula , Fatores de Tempo
3.
J Contam Hydrol ; 148: 39-50, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357486

RESUMO

Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44×1.22×0.076 m (tank 1) and 2.44×0.61×0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)3(0). However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition.


Assuntos
Sedimentos Geológicos/química , Água Subterrânea/química , Urânio/química , Poluentes Radioativos da Água/química , Monitoramento Ambiental , Modelos Teóricos , Tamanho da Partícula , Fatores de Tempo
4.
Environ Sci Technol ; 44(21): 7996-8007, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20942399

RESUMO

Models are a mainstay of the environmental sciences; they allow for both deeper understanding of process knowledge and, to a limited extent, predictive capabilities of current day inputs on the future. Mathematical codes have become increasingly complex with explicit inclusion of many processes that could not be accounted for using simpler solving techniques. And yet, for metal/radionuclide transport in subsurface systems, the inclusion of smaller scale processes in a numerical solver do not always lead to better descriptions of larger scale behavior. The reasons for this are many, but included in this review are the following: unknowable conceptual model errors, discrepancy in the scale of model discretization relative to the scale of the chemical/physical process, and omnipresent chemical and physical heterogeneities. Although it is commonly thought that larger, more complex systems require more complex models to gain insight and predictive capability, there is little to no experimental evidence supporting this thought. Indeed, the evidence points to the fact that larger systems can be well described with simple models. To test this thought and to appreciate the incorporation of scaling behaviors into reactive transport modeling, new experiments are needed that are intermediate in scale between the more traditional bench and field scales.


Assuntos
Poluentes Ambientais/farmacocinética , Metais/farmacocinética , Modelos Químicos , Radioisótopos/farmacocinética , Absorção , Adsorção , Meio Ambiente , Poluentes Ambientais/química , Cinética , Metais/química , Fenômenos Físicos , Radioisótopos/química
5.
J Contam Hydrol ; 118(1-2): 1-12, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20864208

RESUMO

Distribution coefficients (K(d) values) describe contaminant partitioning between liquids and solids for linear sorption at equilibrium conditions. If experimentally-determined K(d) values do not represent sorption equilibria, errors are introduced in contaminant transport models. These errors may be further propagated when K(d) values are used to compare contaminant mobility under different chemical solution conditions. Our theoretical analysis based on pseudo-first order sorption kinetics shows that, independent if two systems have the same or different sorption kinetics, relative comparisons of K(d) values and retardation factors are always affected by sorption times under non-equilibrium conditions. The time-frames required for attaining constant K(d) values are not only dependent on kinetic sorption characteristics, but also the equilibrium K(d) values approached. The type of kinetic errors introduced is affected by the specific differences in sorption kinetics and equilibrium K(d) values between the two systems. For systems with the same sorption kinetics, relative increases or decreases in contaminant velocities are always underestimated. In case of different kinetics, either an under- or overestimation of relative differences seems possible. Experimental sorption times should aim to equilibrate the system with the highest K(d) value for systems with comparable kinetics, and the system with the slowest sorption kinetics for different kinetics.


Assuntos
Poluentes Ambientais/química , Modelos Teóricos , Cinética
6.
Environ Sci Technol ; 43(14): 5403-9, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19708373

RESUMO

The ability to quantify the amount of metals ions that are present as macromolecular, nanoparticulate, or colloid phases is critical for understanding bioavailability and transport as well as performing risk assessments and remediation strategies. Flow field-flow fractionation-inductively coupled plasma mass spectrometry (FI FFF-ICP-MS) is a powerful separation tool that has been previously used to characterize colloidal metals in environmental samples. In this study we examine the degree to which FI FFF-ICP-MS provides quantitative data on uranium speciation by comparing the results to centrifugation followed by filtration. Sorption of uranium to nanoparticulate hematite (approximately 60 nm) was examined over the pH range of 3 to 6. Close agreement was found between the two approaches over the pH range.


Assuntos
Compostos Férricos/química , Fracionamento por Campo e Fluxo/métodos , Espectrometria de Massas/métodos , Nanopartículas , Urânio/química , Adsorção , Concentração de Íons de Hidrogênio , Sensibilidade e Especificidade
7.
Environ Sci Technol ; 41(19): 6776-82, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17969694

RESUMO

In this paper, we describe a new method for labeling NOM with the radioisotope tritium (3H) using fulvic acid (FA) as the target NOM fraction. During labeling, FA ketone groups are chemically reduced with tritiated sodium borohydride (NaBH4), while the chemical functionality of the carboxyl and phenol groups is preserved. The labeling procedure was optimized in efficiency experiments that determined the excess concentration of tritiated NaBH4 required for optimum reduction conditions. The chemical characterization of the labeled FA product using FTIR and 1H NMR spectral analysis confirms the proposed reaction mechanism and rules out any significant amounts of impurities or undesirable side reactions. Results from size exclusion chromatography indicate thatthe tritium label is distributed uniformly over the whole molecular size range of FA and that it is stable over time and under various pH conditions. Potential differences in FA sorption behavior onto mineral surfaces due to labeling were excluded based on experimental data. This method produces NOM of high specific activity (e.g., 1.9 mCi mg(-1) FA); this permits the tracing of FA at a detection limit of 0.3 microg L(-1) FA.


Assuntos
Benzopiranos/química , Boroidretos/química , Trítio/química , Adsorção , Compostos Férricos/química , Marcação por Isótopo , Oxirredução
8.
J Contam Hydrol ; 91(3-4): 233-46, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17196707

RESUMO

The long-term mobility of actinides in groundwaters is important for siting nuclear waste facilities and managing waste-rock piles at uranium mines. Dissolved organic carbon (DOC) may influence the mobility of uranium, but few field-based studies have been undertaken to examine this in typical groundwaters. In addition, few techniques are available to isolate DOC and directly quantify the metals complexed to it. Determination of U-organic matter association constants from analysis of field-collected samples compliments laboratory measurements, and these constants are needed for accurate transport calculations. The partitioning of U to DOC in a clay-rich aquitard was investigated in 10 groundwater samples collected between 2 and 30 m depths at one test site. A positive correlation was observed between the DOC (4-132 mg/L) and U concentrations (20-603 microg/L). The association of U and DOC was examined directly using on-line coupling of Asymmetrical Flow Field-Flow Fractionation (AsFlFFF) with UV absorbance (UVA) and inductively coupled plasma-mass spectrometer (ICP-MS) detectors. This method has the advantages of utilizing very small sample volumes (20-50 microL) as well as giving molecular weight information on U-organic matter complexes. AsFlFFF-UVA results showed that 47-98% of the DOC (4-136 mg C/L) was recovered in the AsFlFFF analysis, of which 25-64% occurred in the resolvable peak. This peak corresponded to a weight-average molecular weight of about 900-1400 Daltons (Da). In all cases, AsFlFFF-ICP-MS suggested that

Assuntos
Benzopiranos/química , Urânio/química , Poluentes Radioativos da Água/química , Benzopiranos/análise , Fracionamento por Campo e Fluxo , Água Doce/química , Espectrometria de Massas , Saskatchewan , Urânio/análise , Poluentes Radioativos da Água/análise
9.
Environ Sci Technol ; 39(7): 2161-8, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15871251

RESUMO

Ion-exchange experiments were performed to evaluate the formation of the uranium-citrate and uranium-iron-citrate complexes over a wide concentration range; i.e., environmentally relevant concentrations (e.g., 10(-6) M in metal and ligand) and concentrations useful for spectroscopic investigations (e.g., 10(-4) M in metal and ligand). The stability of the well-known uranium-citrate complex was determined to validate the computational and experimental methods applied to the more complex system. Values of the conditional stability constants for these species were obtained using a chemical equilibrium model in FITEQL. At a pH of 4.0, the stability constant for uranium-citrate complex (log beta1,1) was determined to be 8.71+/-0.6 at I = 0. Analysis of the results of ion-exchange experiments for the U-Fe-citric acid system indicates the formation of the 1:1:1 and 1:1:2 ternary species with stability constants (log beta) of 17.10+/-0.41 and 20.47+/-0.31, respectively, at I= 0.


Assuntos
Ácido Cítrico/química , Ferro/química , Substâncias Macromoleculares/química , Modelos Químicos , Urânio/química , Concentração de Íons de Hidrogênio , Resinas de Troca Iônica/química , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA