Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(48): 26463-26471, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37992227

RESUMO

Polar monomer-induced ß-H elimination is a key elementary step in polar polyolefin synthesis by coordination polymerization but remains underexplored. Herein, we show that a bulky neutral Ni catalyst, 1Ph, is not only a high-performance catalyst in ethylene/acrylate copolymerization (activity up to ∼37,000 kg/(mol·h) at 130 °C in a batch reactor, mol % tBA ∼ 0.3) but also a suitable platform for investigation of acrylate-induced ß-H elimination. 4Ph-tBu, a novel Ni alkyl complex generated after acrylate-induced ß-H elimination and subsequent acrylate insertion, was identified and characterized by crystallography. A combination of catalysis and mechanistic studies reveals effects of the acrylate monomer, bidentate ligand, and the labile ligand (e.g., pyridine) on the kinetics of ß-H elimination, the role of ß-H elimination in copolymerization catalysis as a chain-termination pathway, and its potential in controlling the polymer microstructure in polar polyolefin synthesis.

2.
Angew Chem Int Ed Engl ; 61(35): e202206637, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35723944

RESUMO

The insertion copolymerization of polar olefins and ethylene remains a significant challenge in part due to catalysts' low activity and poor thermal stability. Herein we demonstrate a strategy toward addressing these obstacles through ligand design. Neutral nickel phosphine enolate catalysts with large phosphine substituents reaching the axial positions of Ni achieve activity of up to 7.7×103  kg mol-1 h-1 (efficiency >35×103  g copolymer/g Ni) at 110 °C, notable for ethylene/acrylate copolymerization. NMR analysis of resulting copolymers reveals highly linear microstructures with main-chain ester functionality. Structure-performance studies indicate a strong correlation between axial steric hindrance and catalyst performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA