Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neural Regen Res ; 20(1): 265-276, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767491

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00034/figure1/v/2024-05-14T021156Z/r/image-tiff Certain amino acids changes in the human Na+/K+-ATPase pump, ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1), cause Charcot-Marie-Tooth disease type 2 (CMT2) disease and refractory seizures. To develop in vivo models to study the role of Na+/K+-ATPase in these diseases, we modified the Drosophila gene homolog, Atpα, to mimic the human ATP1A1 gene mutations that cause CMT2. Mutations located within the helical linker region of human ATP1A1 (I592T, A597T, P600T, and D601F) were simultaneously introduced into endogenous DrosophilaAtpα by CRISPR/Cas9-mediated genome editing, generating the AtpαTTTF model. In addition, the same strategy was used to generate the corresponding single point mutations in flies (AtpαI571T, AtpαA576T, AtpαP579T, and AtpαD580F). Moreover, a deletion mutation (Atpαmut) that causes premature termination of translation was generated as a positive control. Of these alleles, we found two that could be maintained as homozygotes (AtpαI571T and AtpαP579T). Three alleles (AtpαA576T, AtpαP579 and AtpαD580F) can form heterozygotes with the Atpαmut allele. We found that the Atpα allele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila. Flies heterozygous for AtpαTTTF mutations have motor performance defects, a reduced lifespan, seizures, and an abnormal neuronal morphology. These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.

2.
J Hum Genet ; 69(9): 433-440, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38866925

RESUMO

BACKGROUND: Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS: GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS: Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS: GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.


Assuntos
Fatores de Crescimento de Fibroblastos , Humanos , Masculino , Feminino , Fatores de Crescimento de Fibroblastos/genética , Pessoa de Meia-Idade , Adulto , Imageamento por Ressonância Magnética , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/patologia , Idoso , Linhagem , Expansão das Repetições de Trinucleotídeos/genética , Sequências de Repetição em Tandem/genética , Degenerações Espinocerebelares
6.
Hum Mutat ; 40(12): 2334-2343, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31373411

RESUMO

Intermediate Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited neuropathies characterized by progressive muscle weakness and atrophy of the distal extremities, distal sensory loss. There were still a large proportion of causative genes for intermediate CMT failed to be identified. Here, using whole-exome sequencing technique, we identified two novel missense mutations in ATP1A1 gene, c.620C>T (p.S207F) and c.2629G>A (p.G877S), in two Chinese CMT families. Further functional analysis revealed that these mutations led to the loss function of the ATP1A1 protein. The two mutations did not affect the levels of messenger RNA but possessed a damaging effect on ATP1A1 protein expression and they downregulated the protein levels of ATP1A1 by promoting its proteasome degradation. Taken together, we confirmed ATP1A1 as a novel causative gene for intermediate CMT.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Sequenciamento do Exoma/métodos , Mutação de Sentido Incorreto , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto , Idade de Início , Idoso , Linhagem Celular , Doença de Charcot-Marie-Tooth/metabolismo , China , Regulação para Baixo , Feminino , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , ATPase Trocadora de Sódio-Potássio/química , Adulto Jovem
7.
Clin Genet ; 96(1): 53-60, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30891739

RESUMO

Primary familial brain calcification (PFBC) is a rare neurological disorder. Mutations in five genes (SLC20A2, PDGFRB, PDGFB, XPR1, and MYORG) have been linked to PFBC. Here, we used SYBR green-based real-time quantitative polymerase chain reaction (PCR) assay and denaturing high-performance liquid chromatography analysis to detect copy number variants (CNVs) in 20 unrelated patients with PFBC, negatively sequenced for the five known genes. We identified three deletions in SLC20A2, including a large de novo full gene deletion and two exonic deletions confined to exon 2 and exon 6, respectively. Subsequent linked-read whole-genome sequencing of the patient with the large deletion showed a 1.7 Mb heterozygous deletion which removed the entire coding regions of SLC20A2 as well as 21 other genes. In the family with a deletion of exon 6, a missense variant of uncertain significance (SLC20A2: p.E267Q) also co-segregated with the disease. Functional assay showed the deletion could result in significantly impaired phosphate transport, whereas the p.E267Q variant did not. Our results confirm that deletion in SLC20A2 is a causal mechanism for PFBC and highlight the importance of functional study for classifying a rare missense variant as (likely) pathogenic.


Assuntos
Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/genética , Calcinose/diagnóstico , Calcinose/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Deleção de Sequência , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Adolescente , Adulto , Idoso , Alelos , Criança , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Linhagem , Fenótipo , Análise de Sequência de DNA , Receptor do Retrovírus Politrópico e Xenotrópico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA