Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353124

RESUMO

A ternary composite of poly(lactic acid) (PLA), poly(caprolactone) (PCL), and carbon black (CB) shows the PCL-induced CB self-aggregation and percolation formation when the amount of the PCL phase as the secondary phase is as small as the amount of CB. Furthermore, when the drop size of the PCL phase becomes smaller, the ternary composite forms a percolation of high order structure, resulting in a remarkable enhancement of the electrical conductivity (~4 × 10-2 S/m with 4 wt.% CB). To further control the percolation structure, the composite fabrication is controlled by splitting a typical single-step mixing process into two steps, focusing on the dispersion of the secondary PCL phase and the CB particles separately. Under the single-step mixing protocol, the ternary composite shows a structure with greater CB aggregation in the form of a high aspect ratio and large aggregates (aggregate perimeter~aggregate size 0.7). Meanwhile, the two-step mixing process causes the CB aggregates to expand and create a higher structure (aggregate perimeter~aggregate size 0.8). The reduced size of the secondary phase under a mixing condition with high shear force prior to the addition of CB provides a larger interfacial area for CB to diffuse into the PCL phase during the subsequent mixing step, resulting in a further expansion of CB aggregation throughout the composite. The particle percolation of such a high order structure is attributed to high storage modulus (G'), high Young's modulus, high dielectric loss (ε″), and negative-positive switching of dielectric constant at high frequency (of 103 Hz) of composite.

2.
Langmuir ; 34(38): 11454-11463, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30176146

RESUMO

Deformation and breakup of a single agglomerate exposed to pure planar extensional flow in a cross-channel were experimentally investigated. Aggregation was generated by applying shear with destabilized polystyrene particles, and the fractal dimension, df, of the agglomerate was 2.25. The aggregation focused on the center of the channel by sheath flow was rotated while approaching stagnant point. Then, the aspect ratio increased as it deformed close to the stagnant point. The probability of the breakup and the fragment distribution were dependent upon the viscosity and flow rate and were superimposed on a master curve as a function of applied stress. With the increase in stress, the projected area of the fragment that was split by the flow decreased with a power-law relationship, and the exponent was in agreement with the model prediction.

3.
Langmuir ; 32(33): 8494-500, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27472150

RESUMO

We created both a superhydrophilic polymer surface and a superhydrophobic surface by using the poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) multilayers with the synchronously generated hierarchical porous surface structures. The formation of surface and pore structures induced at acidic pH values is subject to the composition, distribution, and molecular weights of polyelectrolytes in the layer-by-layer (LbL) assembled film, leading to a variety of unique surface topographies and porous structures located on different scales. During the porous induction at pH 2.0, both nano- and microscaled features synchronously developed on the surface as a result of the unique combination of high-molecular-weight PAH (900K g/mol) and low molecular weight PAA (15K g/mol), along with a much reduced deposition time of 1 min. Although thermally cross-linked, the porous surface with hierarchical structure could achieve superhydrophilicity due to the remaining free amine and carboxylate groups on the porous structures. A complete switch from the superhydrophilic to the superhydrophobic surface was achieved via a simple chemical vapor deposition of trichloro(1H,1H,2H,2H-perfluoro-octyl)silane. In this work, the effects of molecular weight of polyelectrolytes (15K-900K g/mol), deposition time (10-900 s) during the LbL assembly, and pH (1.8 to 2.4) for the porous induction on the surface topography, pore structures, and wetting behavior were investigated in detail. A variety of unique porous surface structures on different length scales were systematically studied by controlling the above parameters.

4.
IEEE Trans Biomed Eng ; 63(1): 138-47, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26390442

RESUMO

We fabricated a carbon nanotube (CNT)/adhesive polydimethylsiloxane (aPDMS) composite-based dry electroencephalograph (EEG) electrode for capacitive measuring of EEG signals. As research related to brain-computer interface applications has advanced, the presence of hairs on a patient's scalp has continued to present an obstacle to recorder EEG signals using dry electrodes. The CNT/aPDMS electrode developed here is elastic, highly conductive, self-adhesive, and capable of making conformal contact with and attaching to a hairy scalp. Onto the conductive disk, hundreds of conductive pillars coated with Parylene C insulation layer were fabricated. A CNT/aPDMS layer was attached on the disk to transmit biosignals to the pillar. The top of disk was designed to be solderable, which enables the electrode to connect with a variety of commercial EEG acquisition systems. The mechanical and electrical characteristics of the electrode were tested, and the performances of the electrodes were evaluated by recording EEGs, including alpha rhythms, auditory-evoked potentials, and steady-state visually-evoked potentials. The results revealed that the electrode provided a high signal-to-noise ratio with good tolerance for motion. Almost no leakage current was observed. Although preamplifiers with ultrahigh input impedance have been essential for previous capacitive electrodes, the EEGs were recorded here by directly connecting a commercially available EEG acquisition system to the electrode to yield high-quality signals comparable to those obtained using conventional wet electrodes.


Assuntos
Adesivos/química , Interfaces Cérebro-Computador , Eletroencefalografia/instrumentação , Nanotubos de Carbono/química , Couro Cabeludo/fisiologia , Adulto , Eletrodos , Eletroencefalografia/métodos , Potenciais Evocados Auditivos , Cabelo/fisiologia , Humanos , Razão Sinal-Ruído , Adulto Jovem
5.
Sci Rep ; 4: 6074, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25123356

RESUMO

The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system.


Assuntos
Materiais Biocompatíveis , Técnicas Biossensoriais/métodos , Eletrocardiografia/métodos , Monitorização Ambulatorial/métodos , Nanotubos de Carbono , Adesivos , Eletrocardiografia/instrumentação , Desenho de Equipamento , Humanos , Teste de Materiais , Microeletrodos
6.
IEEE Trans Biomed Eng ; 59(5): 1472-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22410324

RESUMO

We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.


Assuntos
Dimetilpolisiloxanos/química , Eletrocardiografia/instrumentação , Monitorização Ambulatorial/instrumentação , Nanotubos de Carbono/química , Adulto , Vestuário , Dimetilpolisiloxanos/efeitos adversos , Eletrocardiografia/métodos , Eletrodos , Feminino , Humanos , Masculino , Teste de Materiais , Nanotubos de Carbono/efeitos adversos
7.
Langmuir ; 25(20): 12361-6, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19821631

RESUMO

In this study, a microfluidic method to generate small polymeric particles ( approximately 10 mum in diameter) via the control of interfacial tension without using oil and in situ photopolymerization immediately after drop generation was introduced. For the reduction in size, the selection of proper sample and sheath liquid to minimize the interfacial tension is extremely important, and 4-HBA (4-hydroxybutyl acrylate) and PVA (poly(vinyl acrylate)) were employed as core and sheath fluid pair because of much smaller surface tension than the case using oil. In addition, PVA is easily washable by aqueous solution, which is a strong advantage when the particle is applied in biomedical fields. The viscosity effect of sheath flow was also examined for further size reduction. The loading and release properties of proteins were evaluated using fluorescently labeled bovine serum albumin for the potential application as drug carrier. The protein was uniformly loaded into particles, and the protein release rate was dependent on the particle size. For utility in the biomedical area, the cyto-compatibility test of 4-HBA was performed by culturing glioma cells on the 4-HBA sheet, and the cells were alive well after 4 days culture. Conclusively, this oil-free particle generation methods facilitates the generation of uniform and small particles in a simple way without an oil-washing process.


Assuntos
Polímeros/química , Acrilatos/química , Acrilatos/metabolismo , Acrilatos/toxicidade , Animais , Bovinos , Linhagem Celular Tumoral , Técnicas Analíticas Microfluídicas , Microesferas , Óleos/química , Tamanho da Partícula , Polímeros/metabolismo , Polímeros/toxicidade , Soroalbumina Bovina/metabolismo , Tensão Superficial , Raios Ultravioleta , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA