Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(16): 11524-11532, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601707

RESUMO

Graphene oxide quantum dots (GOQDs) are promising candidates for biomedical applications since they have lower toxicity and higher biocompatibility than traditional semiconductor quantum dots. However, oxygen functional groups such as epoxy and hydroxyl groups usually induce nonradiative relaxation, which leads to GOQDs exhibiting nonemissive properties. For the enhancement of the emission efficiency of GOQDs, the number of nonradiative relaxation sites should be reduced. This paper reports the synthesis of highly luminescent reduced GOQDs prepared by liquid-phase photoreduction (LPP-rGOQDs). First, GOQDs was fabricated from single-walled carbon nanotubes through chlorate-based oxidation and separation after acoustic cavitation. Subsequently, LPP-rGOQDs were obtained by liquid-phase photoreduction of the GOQD suspension under intense pulsed light irradiation. Liquid-phase photoreduction selectively reduced epoxy groups present on the basal plane of GOQDs, and hydrogenated the basal plane without removal of carbonyl and carboxyl groups at the edges of the GOQDs. Such selective removal of oxidative functional groups was used to control the reduction degree of GOQDs, closely related to their optical properties. The optimized LPP-rGOQDs were bright blue in color and showed quantum yields up to about 19.7%, which was 10 times the quantum yield of GOQDs. Furthermore, the LPP-rGOQDs were utilized to image a human embryonic kidney (HEK293A), and a low cytotoxicity level and satisfactory cell imaging performance were observed.

2.
J Hazard Mater ; 384: 121296, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31574387

RESUMO

Leaching behaviors and mechanisms of commercialized glass wasteforms to sequester low-level solid-wastes were investigated: SG glass for resin waste and DG-2 glass for dry active waste. After ANS 16.1 leaching test, leachabilities of the nuclides, Co, Cs, and Sr, were all lager than 14, which met the requirement of the US-Nuclear Regulatory Commission. Holes of diameters 5-10 µm remained on the surface of the SG and crevices of lengths 10-50 µm were observed on the surface of the DG-2. We analyzed elemental compositions of the SG and the DG-2 with depths. For the SG, Si, Al, Ca, and Mg were accumulated and Na was depleted up to nearly 1.5 µm compared to an internal glass. For the DG-2, concentrations of B, Na, Al, Ca and Sr started to decrease from 2.5 µm even though other minor elements are still remained their concentrations. We suggested leaching mechanisms: alkali elements including H would diffuse through the holes on the SG, while most of the elements including Si and Al would diffuse through the crevices on the DG-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA