Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Chem ; 61(12): 718-727, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36882950

RESUMO

Investigation of mitochondrial metabolism is gaining increased interest owing to the growing recognition of the role of mitochondria in health and numerous diseases. Studies of isolated mitochondria promise novel insights into the metabolism devoid of confounding effects from other cellular organelles such as cytoplasm. This study describes the isolation of mitochondria from mouse skeletal myoblast cells (C2C12) and the investigation of live mitochondrial metabolism in real-time using isotope tracer-based NMR spectroscopy. [3-13 C1 ]pyruvate was used as the substrate to monitor the dynamic changes of the downstream metabolites in mitochondria. The results demonstrate an intriguing phenomenon, in which lactate is produced from pyruvate inside the mitochondria and the results were confirmed by treating mitochondria with an inhibitor of mitochondrial pyruvate carrier (UK5099). Lactate is associated with health and numerous diseases including cancer and, to date, it is known to occur only in the cytoplasm. The insight that lactate is also produced inside mitochondria opens avenues for exploring new pathways of lactate metabolism. Further, experiments performed using inhibitors of the mitochondrial respiratory chain, FCCP and rotenone, show that [2-13 C1 ]acetyl coenzyme A, which is produced from [3-13 C1 ]pyruvate and acts as a primary substrate for the tricarboxylic acid cycle in mitochondria, exhibits a remarkable sensitivity to the inhibitors. These results offer a direct approach to visualize mitochondrial respiration through altered levels of the associated metabolites.


Assuntos
Mitocôndrias , Ácido Pirúvico , Camundongos , Animais , Mitocôndrias/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo
2.
Anal Chem ; 93(6): 3233-3240, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33538164

RESUMO

Significant advances have been made in unknown metabolite identification and expansion of the number of quantifiable metabolites in human plasma, serum, and whole blood using NMR spectroscopy. However, reliable quantitation of metabolites is still a challenge. A major bottleneck is the lack of a suitable internal standard that does not interact with the complex blood sample matrix and also does not overlap with metabolite peaks apart from exhibiting other favorable characteristics. With the goal of addressing this challenge, a comprehensive investigation of fumaric and maleic acids as potential internal standards was made along with a comparison with the conventional standards, TSP (trimethylsilylpropionic acid) and DSS (trimethylsilylpropanesulfonic acid). Both fumaric acid and maleic acid exhibited a surprisingly high performance with a quantitation error <1%, while the TSP and DSS caused an average error of up to 35% in plasma, serum, and whole blood. Further, the results indicate that while fumaric acid is a robust standard for all three biospecimens, maleic acid is suitable for only plasma and serum. Maleic acid is not suited for the analysis of whole blood due to its overlap with coenzyme peaks. These findings provide new opportunities for improved and accurate quantitation of metabolites in human plasma, serum, and whole blood using NMR spectroscopy. Moreover, the use of protein precipitation prior to NMR analysis mirrors the sample preparation commonly used for mass spectrometry based metabolomics, such that these findings further strengthen efforts to combine and compare NMR and MS based metabolite data of human plasma, serum, and whole blood for metabolomics based research.


Assuntos
Plasma , Soro , Fumaratos , Humanos , Espectroscopia de Ressonância Magnética , Maleatos , Metabolômica
3.
Nutrients ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575611

RESUMO

Plant lignans and their microbial metabolites, e.g., enterolactone (ENL), may affect bile acid (BA) metabolism through interaction with hepatic receptors. We evaluated the effects of a flaxseed lignan extract (50 mg/day secoisolariciresinol diglucoside) compared to a placebo for 60 days each on plasma BA concentrations in 46 healthy men and women (20-45 years) using samples from a completed randomized, crossover intervention. Twenty BA species were measured in fasting plasma using LC-MS. ENL was measured in 24-h urines by GC-MS. We tested for (a) effects of the intervention on BA concentrations overall and stratified by ENL excretion; and (b) cross-sectional associations between plasma BA and ENL. We also explored the overlap in bacterial metabolism at the genus level and conducted in vitro anaerobic incubations of stool with lignan substrate to identify genes that are enriched in response to lignan metabolism. There were no intervention effects, overall or stratified by ENL at FDR < 0.05. In the cross-sectional analysis, irrespective of treatment, five secondary BAs were associated with ENL excretion (FDR < 0.05). In vitro analyses showed positive associations between ENL production and bacterial gene expression of the bile acid-inducible gene cluster and hydroxysteroid dehydrogenases. These data suggest overlap in community bacterial metabolism of secondary BA and ENL.


Assuntos
Ácidos e Sais Biliares/sangue , Linho/metabolismo , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Adulto , Cromatografia Líquida , Estudos Cross-Over , Estudos Transversais , Método Duplo-Cego , Feminino , Humanos , Lignanas/metabolismo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Extratos Vegetais/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA