Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Microbiol Biotechnol ; 34(3): 596-605, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044685

RESUMO

Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.


Assuntos
Antocianinas , Peróxido de Hidrogênio , Humanos , Antocianinas/farmacologia , Antocianinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Transdução de Sinais , Linhagem Celular , Estresse Oxidativo , Apoptose , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia
2.
Adv Mater ; 35(45): e2303401, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37499253

RESUMO

Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems, and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications.

3.
Nat Commun ; 13(1): 6801, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357417

RESUMO

Glaucoma is one of the irreversible ocular diseases that can cause vision loss in some serious cases. Although Triggerfish has been commercialized for monitoring intraocular pressure in glaucoma, there is no smart contact lens to monitor intraocular pressure and take appropriate drug treatment in response to the intraocular pressure levels. Here, we report a precisely integrated theranostic smart contact lens with a sensitive gold hollow nanowire based intraocular pressure sensor, a flexible drug delivery system, wireless power and communication systems and an application specific integrated circuit chip for both monitoring and control of intraocular pressure in glaucoma. The gold hollow nanowire based intraocular pressure sensor shows high ocular strain sensitivity, chemical stability and biocompatibility. Furthermore, the flexible drug delivery system can be used for on-demand delivery of timolol for intraocular pressure control. Taken together, the intraocular pressure levels can be successfully monitored and controlled by the theranostic smart contact lens in glaucoma induced rabbits. This theranostic smart contact lens would be harnessed as a futuristic personal healthcare platform for glaucoma and other ocular diseases.


Assuntos
Lentes de Contato , Glaucoma , Animais , Coelhos , Pressão Intraocular , Medicina de Precisão , Glaucoma/diagnóstico , Glaucoma/terapia , Ouro
4.
Adv Drug Deliv Rev ; 188: 114419, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810884

RESUMO

In the past decade, upconversion (UC) nanomaterials have been extensively investigated for the applications to photomedicines with their unique features including biocompatibility, near-infrared (NIR) to visible conversion, photostability, controllable emission bands, and facile multi-functionality. These characteristics of UC nanomaterials enable versatile light delivery for deep tissue biophotonic applications. Among various stimuli-responsive delivery systems, the light-responsive delivery process has been greatly advantageous to develop spatiotemporally controllable on-demand "smart" photonic medicines. UC nanomaterials are classified largely to two groups depending on the photon UC pathway and compositions: inorganic lanthanide-doped UC nanoparticles and organic triplet-triplet annihilation UC (TTA-UC) nanomaterials. Here, we review the current-state-of-art inorganic and organic UC nanomaterials for photo-medicinal applications including photothermal therapy (PTT), photodynamic therapy (PDT), photo-triggered chemo and gene therapy, multimodal immunotherapy, NIR mediated neuromodulations, and photochemical tissue bonding (PTB). We also discuss the future research direction of this field and the challenges for further clinical development.


Assuntos
Nanopartículas , Nanoestruturas , Fotoquimioterapia , Atenção à Saúde , Humanos
5.
Oncol Rep ; 47(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293594

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that certain of the data panels featured in Figs. 1B, 4A, 6A and 8A, showing DAPI or NAC staining of the cells, appeared to contain overlapping data. The authors have consulted their original data, and realize that errors were made during the compilation of these figures; consequently, they have repeated the affected experiments. The revised versions of Figs. 1, 4, 6 and 8, featuring replacement data for Figs. 1B, 4A, 6A and 8A, are shown on the subsequent pages. The authors regret the errors that were made during the preparation of the published figures, and confirm that these errors did not affect the conclusions reported in the study. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish a Corrigendum, and all the authors agree to this Corrigendum. Furthermore, they apologize to the readership for any inconvenience caused. [the original article was published in Oncology Reports 36: 205­214, 2016; DOI: 10.3892/or.2016.4812].

6.
Adv Sci (Weinh) ; 9(9): e2103254, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092362

RESUMO

Diabetic retinopathy is currently treated by highly invasive repeated therapeutic injections and surgical interventions without complete vision recovery. Here, a noninvasive smart wireless far red/near-infrared (NIR) light emitting contact lens developed successfully for the repeated treatment of diabetic retinopathy with significantly improved compliance. A far red/NIR light emitting diode (LED) is connected with an application-specific integrated circuit chip, wireless power, and communication systems on a PET film, which is embedded in a silicone elastomer contact lens by thermal crosslinking. After in vitro characterization, it is confirmed that the retinal vascular hyper-permeability induced by diabetic retinopathy in rabbits is reduced to a statistically significant level by simply repeated wearing of smart far red/NIR LED contact lens for 8 weeks with 120 µW light irradiation for 15 min thrice a week. Histological analysis exhibits the safety and feasibility of LED contact lenses for treating diabetic retinopathy. This platform technology for smart LED contact lens would be harnessed for various biomedical photonic applications.


Assuntos
Lentes de Contato , Diabetes Mellitus , Retinopatia Diabética , Animais , Retinopatia Diabética/terapia , Raios Infravermelhos , Coelhos
7.
Int J Med Sci ; 18(12): 2480-2492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104079

RESUMO

Background: Trans-cinnamaldehyde (tCA), a bioactive component found in Cinnamomum cassia, has been reported to exhibit anti-inflammatory and antioxidant effects, but its efficacy in muscle cells has yet to be found. In this study, we investigated the inhibitory effect of tCA on inflammatory and oxidative stress induced by lipopolysaccharide (LPS) in C2C12 mouse skeletal myoblasts. Methods: To investigate the anti-inflammatory and antioxidant effects of tCA in LPS-treated C2C12 cells, we measured the levels of pro-inflammatory mediator, cytokines, and reactive oxygen species (ROS). To elucidate the mechanism underlying the effect of tCA, the expression of genes involved in the expression of inflammatory and oxidative regulators was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of tCA against LPS in the zebrafish model. Results: tCA significantly inhibited the LPS-induced release of pro-inflammatory mediators and cytokines, which was associated with decreased expression of their regulatory genes. tCA also suppressed the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor, and attenuated the nuclear translocation of nuclear factor-kappa B (NF-κB) and the binding of LPS to TLR4 on the cell surface in LPS-treated C2C12 cells. Furthermore, tCA abolished LPS-induced generation of ROS and expression levels of ROS producing enzymes, NADPH oxidase 1 (NOX1) and NOX2. However, tCA enhanced the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated C2C12 myoblasts. In addition, tCA showed strong protective effects against NO and ROS production in LPS-injected zebrafish larvae. Conclusions: Our findings suggest that tCA exerts its inhibitory ability against LPS-induced inflammatory and antioxidant stress in C2C12 myoblasts by targeting the TLR4/NF-κB, which might be mediated by the NOXs and Nrf2/HO-1 pathways.


Assuntos
Acroleína/análogos & derivados , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acroleína/farmacologia , Acroleína/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Mioblastos , NF-kappa B/metabolismo , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Peixe-Zebra
8.
Biosci Trends ; 14(1): 23-34, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32092745

RESUMO

The roots of Angelica dahurica have long been used as a traditional medicine in Korea to treat various diseases such as toothache and cold. In this study, we investigated the effect of ethanol extract from the roots of this plant on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells and B16F10 cell inoculated-C57BL/6 mice. Our results showed that the ethanol extracts of Angelicae dahuricae Radix (EEAD) suppressed cell growth and induced apoptotic cell death in B16F10 cells. EEAD also activated the mitochondria-mediated intrinsic apoptosis pathway, with decreased mitochondrial membrane potential, and increased production of intracellular reactive oxygen species and ration of Bax/Bcl-2 expression. Furthermore, EEAD reduced the migration, invasion, and colony formation of B16F10 cells through the reduced expression and activity of matrix metalloproteinase (MMP)-2 and -9. In addition, in vivo results demonstrated that oral administration of EEAD inhibited lactate dehydrogenase activity, hepatotoxicity, and nephrotoxicity without weight loss in B16F10 cell inoculated-mice. Importantly, EEAD was able to markedly suppress lung hypertrophy, the incidence of B16F10 cells lung metastasis, and the expression of tumor necrosis factor-alpha in lung tissue. Taken together, our findings suggest that EEAD may be useful for managing metastasis and growth of malignant cancers, including melanoma.


Assuntos
Angelica/química , Melanoma Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Hipertrofia , L-Lactato Desidrogenase/antagonistas & inibidores , Pulmão/patologia , Neoplasias Pulmonares , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Antioxidants (Basel) ; 8(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540482

RESUMO

The present study investigated the immunomodulatory activity of reduced glutathione (GSH) by assessment of the macrophage polarization (MP)-mediated immune response in RAW 264.7 cells. Furthermore, we identified the signal pathway associated with immune regulation by GSH. The expressions of MP-associated cytokines and chemokines were assessed using cytokine array, nCounter Sprit platform, ELISA and immunoblotting. Phagocytosis activity and intracellular reactive oxygen species (ROS) generation were measured using fluorescence-activated cell sorter. As results of the cytokine array and nCounter gene array, GSH not only up-regulated pro-inflammatory cytokines, including interleukins and tumor necrosis factor-α, but also overexpressed neutrophil-attracting chemokines. Furthermore, GSH significantly stimulated the production of immune mediators, including nitric oxide and PGE2, as well as phagocytosis activity through nuclear factor kappa B activation. In addition, GSH significantly decreased LPS-induced ROS generation, which was associated with an activation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/ heme oxygenease-1 (HO-1) signaling pathway. Our results suggest that GSH has potential ROS scavenging capacity via the induction of Nrf2-mediated HO-1, and immune-enhancing activity by regulation of M1-like macrophage polarization, indicating that GSH may be a useful strategy to increase the human defense system.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30909475

RESUMO

Tacrolimus is widely used as an immunosuppressant to reduce the risk of rejection after organ transplantation, but its cytotoxicity is problematic. Nargenicin A1 is an antibiotic extracted from Nocardia argentinensis and is known to have antioxidant activity, though its mode of action is unknown. The present study was undertaken to evaluate the protective effects of nargenicin A1 on DNA damage and apoptosis induced by tacrolimus in hirame natural embryo (HINAE) cells. We found that reduced HINAE cell survival by tacrolimus was due to the induction of DNA damage and apoptosis, both of which were prevented by co-treating nargenicin A1 or N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, with tacrolimus. In addition, apoptosis induction by tacrolimus was accompanied by increases in ROS generation and decreases in adenosine triphosphate (ATP) levels caused by mitochondrial dysfunction, and these changes were significantly attenuated in the presence of nargenicin A1, which further indicated tacrolimus-induced apoptosis involved an oxidative stress-associated mechanism. Furthermore, nargenicin A1 suppressed tacrolimus-induced B-cell lymphoma-2 (Bcl-2) down-regulation, Bax up-regulation, and caspase-3 activation. Collectively, these results demonstrate that nargenicin A1 protects HINAE cells against tacrolimus-induced DNA damage and apoptosis, at least in part, by scavenging ROS and thus suppressing the mitochondrial-dependent apoptotic pathway.


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Imunossupressores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Tacrolimo/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Embrião de Mamíferos/citologia , Humanos , Lactonas/farmacologia , Nocardia/química
11.
Exp Ther Med ; 14(6): 5809-5816, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29285125

RESUMO

Daehwangmokdantang (DHMDT) is a traditional polyherbal formulation that has known antidiarrheal and anti-inflammatory activities. However, the underlying mechanisms of these activities are poorly understood. In the present study, the inhibitory effects of DHMDT on the production of proinflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were investigated. The inhibitory effects of DHMDT on LPS-induced nitric oxide (NO), prostaglandin (PG)E2, tumor necrosis factor (TNF)-α and interleukin (IL)-1ß production were examined using Griess reagent and ELISA detection kits. The effects of DHMDT on the expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, IL-1ß and TNF-α, and their upstream signal proteins, including nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and RAC-α serine/threonine-protein kinase (Akt), a phosphatidylinositol 3-kinase (PI3K) downstream effector, were investigated using western blotting and immunofluorescence staining. The results revealed the pretreatment with DHMDT significantly inhibited the LPS-induced production of NO, PGE2, TNF-α, and IL-1ß, and expression of iNOS, COX-2 TNF-α, and IL-1ß, without any significant cytotoxicity. DHMDT also efficiently prevented the translocation of the NF-κB subunit p65 into the nucleus by interrupting the activation of the upstream mediator inhibitor of NF-κB kinase α/ß. Furthermore, the anti-inflammatory effects of DHMDT were associated with the suppression of LPS-induced phosphorylation of Akt and MAPKs in RAW 264.7 macrophages. Therefore, the results of the present study indicate that DHMDT exhibited anti-inflammatory activity via the inhibition of proinflammatory mediators and cytokines, in which the inactivation of NF-κB, PI3K/Akt, and MAPKs may be involved. These results suggest that DHMDT may be a potential anti-inflammatory drug candidate.

12.
Oncol Lett ; 14(1): 853-859, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693242

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, has garnered interest as it is relatively non-toxic to normal cells, but selectively induces apoptotic cell death in multiple types of transformed or malignant cells. Bufalin is the major digoxin-like immunoreactive component of Sum Su, which is obtained from the skin and parotid venom gland of the toad. Bufalin is known to inhibit cell proliferation and induce apoptosis in a variety of cancer cells. The present study investigated whether bufalin promoted TRAIL-induced apoptotic cell death. In the present study, a combined treatment using bufalin and TRAIL significantly increased TRAIL-mediated inhibition of cell viability and increased apoptosis in T24 human bladder cancer cells. The apoptotic effects were associated with the upregulation of death receptor proteins and the downregulation of cellular Fas-associated death domain-like interleukin-1ß-converting enzyme inhibitory protein and X-linked inhibitor of apoptosis protein. Furthermore, the data revealed that bufalin and TRAIL activated caspase-3, -8 and -9 and subsequently increased the degradation of poly (ADP-ribose) polymerase. Taken altogether, the nontoxic doses of bufalin and TRAIL sensitized T24 cells to TRAIL-mediated apoptosis. Therefore, bufalin may provide an effective therapeutic strategy for the safe treatment of human bladder cancers that are resistant to TRAIL.

13.
Arch Toxicol ; 91(12): 4009-4015, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28634823

RESUMO

Discrepant incidence has been reported regarding the incidence of herb-induced liver injury (HILI). To address the growing worldwide concern of HILI, we evaluated the risk of HILI in a nationwide prospective study. Between April 2013 and January 2016, 1001 inpatients (360 males and 641 females) from 10 tertiary hospitals throughout South Korea were treated with herbal drugs and had their liver enzymes periodically measured. A total of six patients met the criteria for HILI with RUCAM scores ranging from 4 to 7. All these participants were women and developed the hepatocellular type of HILI. One HILI participant met the criteria for Hy's law; however, none of six cases presented clinical symptoms related to liver injury. This is the first nationwide prospective study that estimated the extent of the incidence of HILI [total: 0.60%, 95% confidence interval (CI) 0.12-1.08; women: 0.95%, 95% CI 0.19-1.68] and described its features in hospitalized participants.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Medicamentos de Ervas Chinesas/efeitos adversos , Fígado/enzimologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Feminino , Humanos , Incidência , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , República da Coreia/epidemiologia
14.
Int J Mol Med ; 39(2): 399-406, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28035409

RESUMO

In the present study, we investigated the cytoprotective efficacy of morin, a natural flavonoid, against oxidative stress and elucidated the underlying mechanisms in C2C12 myoblasts. Our results indicated that morin treatment prior to hydrogen peroxide (H2O2) exposure significantly increased cell viability and prevented the generation of reactive oxygen species. H2O2-induced comet-like DNA formation and γH2AX phosphorylation were also markedly suppressed by morin with a parallel inhibition of apoptosis in C2C12 myoblasts, suggesting that morin prevented H2O2-induced cellular DNA damage. Furthermore, morin markedly enhanced the expression of heme oxygenase-1 (HO-1) associated with the induction and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the inhibition of Kelch-like ECH-associated protein 1 (Keap1) expression. Notably, these events were eliminated by transient transfection with Nrf2­specific small interfering RNA. Additional experiments demonstrated that the activation of the Nrf2/HO-1 pathway by morin was mediated by the extracellular signal­regulated kinase (ERK) signaling cascade. This phenomenon was confirmed with suppressed Nrf2 phosphorylation and consequently diminished HO-1 expression in cells treated with a pharmacological inhibitor of ERK. Collectively, these results demonstrated that morin augments the cellular antioxidant defense capacity through the activation of Nrf2/HO­1 signaling, which involves the activation of the ERK pathway, thereby protecting C2C12 myoblasts from H2O2-induced oxidative cytotoxicity.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Dano ao DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Peróxido de Hidrogênio/farmacologia , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Substâncias Protetoras/farmacologia
15.
Biosci Trends ; 10(6): 467-476, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-27890875

RESUMO

The fruit of Evodia rutaecarpa (Juss.) Benth has been used widely in traditional medicine therapy. Although it has been shown to possess many pharmacological activities, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated. In the present study, we investigated the pro-apoptotic effects of an ethanol extract isolated from immature fruits of E. rutaecarpa (EEER) in HeLa human cervical cancer cells. EEER treatment decreased the cell viability of HeLa cells in a concentration-dependent manner, which was related to apoptotic cell death resulting from apoptotic body formation, DNA fragmentation, and an increased population of annexin V+-positive cells. EEER treatment significantly suppressed anti-apoptotic Bcl-2 expression, leading to subsequent loss of mitochondrial membrane potential (MMP), while it did not change expression levels of death receptor (DR)-related proteins. EEER treatment increased activity of caspase-3 and -9 but not caspase-8, and pretreatment of a caspase-3 inhibitor markedly attenuated EEER-induced apoptosis. Furthermore, EEER activated the AMP-activated protein kinase (AMPK) signaling pathway; however, inhibition of AMPK markedly abrogated EEER-induced apoptosis. Overall, the results suggest that the apoptotic activity of EEER may be associated with a caspase-dependent cascade through activation of the intrinsic signaling pathway connected with AMPK activation. E. rutaecarpa could be a prospective clinical application to treat human cervical cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Evodia/química , Extratos Vegetais/farmacologia , Caspases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Etanol/química , Feminino , Células HeLa , Humanos , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo
16.
Oncol Rep ; 36(1): 205-14, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27221553

RESUMO

Hwang-Heuk-San (HHS) is a polyherbal formulation that has been used in traditional Korean medicine for hundreds of years to treat gastrointestinal malignancy. However, to date, the mechanisms responsible for the anticancer effects remain unclear. In the present study, we investigated the anticancer effects of HHS using HCT116 human colorectal cancer (CRC) cells. Our results showed that HHS treatment significantly reduced cell survival and increased apoptotic cell death in a concentration-dependent manner. The treatment of HCT116 cells with HHS also significantly elevated the accumulation of reactive oxygen species (ROS), which was followed by the attenuation of the mitochondrial membrane potential through the upregulation of Bax and the downregulation of Bcl-2, which was accompanied by the release of cytochrome c to the cytosol. In addition, HHS treatment caused the truncation of Bid and activated the caspases (caspase-8, -9 and -3), which was associated with the induction of the Fas ligand, the death receptors (DRs), DR4 and DR5, downregulation of the inhibitors of protein expression in the apoptosis protein family, and the degradation of poly(ADP-ribose)-polymerase. However, a pan-caspase inhibitor reversed the HHS-induced apoptosis and growth suppression, indicating that HHS induces apoptosis though a caspase-dependent intrinsic and extrinsic apoptotic pathway in HCT116 cells. Moreover, HHS treatment inhibited the activation of phosphatidylinositol-3-kinase (PI3K)/Akt signaling, and a pharmacological inhibitor of PI3K significantly potentiated the apoptotic effects of HHS when employed in combination in HCT116 cells. Furthermore, the blocking of ROS generation by antioxidant N-acetyl cysteine attenuated the HHS-induced release of cytochrome c, caspase activation and PI3K/Akt inactivation, thereby preventing HHS-induced apoptosis and reduction in cell viability. These findings suggest that HHS-induced ROS generation is required for caspase-dependent apoptotic cell death involving inhibition of the PI3K/Akt signaling pathway in HCT116 cells. Overall, our findings suggest that HHS may be an effective treatment for CRC cancer, and further studies are required to identify the active compounds in HHS.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Citocromos c/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HCT116 , Humanos , Medicina Tradicional Coreana , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
17.
Oncol Rep ; 36(1): 99-107, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27122127

RESUMO

The Korean prostrate spurge Euphorbia supina (Euphorbiaceae family) has been used as a folk medicine in Korea against a variety of ailments such as bronchitis, hemorrhage, jaundice and multiple gastrointestinal diseases. Polyphenols from Korean E. supina (PES) which include quercetin and kaempferol derivatives have anticancer properties. Hence, we investigated the anticancer effects of PES on U937 human leukemic cells. Firstly, PES significantly inhibited the proliferation of U937 cells in a dose-dependent manner. PES induced accumulation of the sub-G1 DNA content (apoptotic cell population), apoptotic bodies and chromatin condensation and DNA fragmentation in the U937 cells. PES also induced activation of caspase-3, -8 and -9, subsequent cleavage of PARP, and significantly suppressed XIAP, cIAP-1 and cIAP-2 in a dose-dependent manner. Furthermore, PES activated Bid, and induced the loss of mitochondrial membrane potential (MMP, ΔΨm) along with upregulation of pro-apoptotic proteins (Bax and Bad), and downregulation of anti-apoptotic proteins (Bcl-2 and Bcl-xL) and cytochrome c release. The Fas receptor was upregulated by PES in a dose-dependent manner, suggesting that the extrinsic pathway was also involved in the PES-induced apoptosis. Moreover, the PES-induced apoptosis was at least in part associated with extracellular signal-regulated kinase (ERK) activation in the U937 human leukemic cells. This study provides evidence that PES may be useful in the treatment of leukemia.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Euphorbia/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Leucemia/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Polifenóis/farmacologia , Antineoplásicos/isolamento & purificação , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína 3 com Repetições IAP de Baculovírus , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Poli(ADP-Ribose) Polimerases/metabolismo , Polifenóis/isolamento & purificação , República da Coreia , Células U937 , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína X Associada a bcl-2/biossíntese , Proteína de Morte Celular Associada a bcl/biossíntese
18.
Drug Dev Res ; 77(2): 73-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26971531

RESUMO

Baicalein is one of the main bioactive flavonoids found in the roots of Scutellaria baicalensis Georgi. Here, we report that baicalein-induced growth inhibition was associated with the induction of apoptosis in human lung carcinoma A549 cells. Baicalein stimulated the expression of DR5, FasL, and FADD, and activated caspase-8 by reducing the levels of FLIPs (FLICE-inhibitory proteins). The apoptotic cell death was also connected with an activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase; however, a blockage of caspase activation abolished baicalein-induced apoptotic potentials. Additionally, baicalein caused a mitochondrial membrane potential (MMP), the truncation of Bid, and the translocation of pro-apoptotic Bax to the mitochondria, thereby inducing the release of cytochrome c into the cytosol. In turn, baicalein increased the generation of reactive oxygen species (ROS); however, an ROS scavenger, N-acetylcysteine, notably attenuated baicalein-mediated loss of MMP and activation of caspases. Furthermore, baicalein activated the AMP-activated protein kinase (AMPK) signaling pathway. Consequently, baicalein-triggered cell death was attenuated by an AMPK inhibitor, but increased by an AMPK activator, compound C. Overall, the results suggest that the apoptotic activity of baicalein may be associated with caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways connected with ROS generation and AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Caspases/metabolismo , Flavanonas/farmacologia , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos
19.
Biomol Ther (Seoul) ; 23(1): 31-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25593641

RESUMO

Histone acetylation plays a critical role in the regulation of transcription by altering the structure of chromatin, and it may influence the resistance of some tumor cells to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) by regulating the gene expression of components of the TRAIL signaling pathway. In this study, we investigated the effects and molecular mechanisms of trichostatin A (TSA), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in Caki human renal carcinoma cells. Our results indicate that nontoxic concentrations of TSA substantially enhance TRAIL-induced apoptosis compared with treatment with either agent alone. Cotreatment with TSA and TRAIL effectively induced cleavage of Bid and loss of mitochondrial membrane potential (MMP), which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase (PARP), contributing toward the sensitization to TRAIL. Combined treatment with TSA and TRAIL significantly reduced the levels of the cellular Fas-associated death domain (FADD)-like interleukin-1ß-converting enzyme (FLICE) inhibitory protein (c-FLIP), whereas those of death receptor (DR) 4, DR5, and FADD remained unchanged. The synergistic effect of TAS and TRAIL was perfectly attenuated in c-FLIPL-overexpressing Caki cells. Taken together, the present study demonstrates that down-regulation of c-FLIP contributes to TSA-facilitated TRAIL-induced apoptosis, amplifying the death receptor, as well as mitochondria-mediated apoptotic signaling pathways.

20.
IEEE Trans Biomed Circuits Syst ; 9(6): 815-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26731776

RESUMO

This paper presents a double-side CMOS-carbon nanotube (CNT) sensor array for simple bare-die measurements in a medical environment based on a 0.35 µm standard CMOS process. This scheme allows robust measurements due to its inherent back-side rectifying diodes with a high latch-up resistance. In particular, instead of using pads, only two contact metal structures: a wide ring structure around the sensor area on the front side and a plate structure at the backside are used for both power and single I/O line. The back-side rectification is made possible by creating VDD and VSS through the back-side and front-side, respectively. The single I/O line is conditioned such that it doubles as either the power source or the ground, depending on whether the chip is face down or face up. A modified universal asynchronous receiver/transmitter (UART) serial communication scheme with pulse based I/O signal transmission is developed to reduce the power degradation during the signaling intervals. In addition, communication errors and I/O power dissipation for the receiver path are minimized by using level sensitive switch control and double sampling difference amplifier. In order to implement these special functions, a controller chip with a special I/O protocol is designed. Using this controller chip, issuing commands and receiving data can both be performed on a single line and the results are flexibly measured through either the backside or the front side of the chip contacts. As a result, a stable operation of under 150 mW maximum power at 2 MHz data rate can be achieved. The double-side chips with 32 × 32 and 64 × 64 sensor arrays occupy areas of 1.9 × 2.3 mm(2) and 3.7 × 3.9 mm(2), respectively.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Amplificadores Eletrônicos , Desenho de Equipamento , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA