Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
NPJ Vaccines ; 9(1): 108, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879560

RESUMO

Alzheimer's disease (AD) and related tauopathies are associated with pathological tau protein aggregation, which plays an important role in neurofibrillary degeneration and dementia. Targeted immunotherapy to eliminate pathological tau aggregates is known to improve cognitive deficits in AD animal models. The tau repeat domain (TauRD) plays a pivotal role in tau-microtubule interactions and is critically involved in the aggregation of hyperphosphorylated tau proteins. Because TauRD forms the structural core of tau aggregates, the development of immunotherapies that selectively target TauRD-induced pathological aggregates holds great promise for the modulation of tauopathies. In this study, we generated recombinant TauRD polypeptide that form neurofibrillary tangle-like structures and evaluated TauRD-specific immune responses following intranasal immunization in combination with the mucosal adjuvant FlaB. In BALB/C mice, repeated immunizations at one-week intervals induced robust TauRD-specific antibody responses in a TLR5-dependent manner. Notably, the resulting antiserum recognized only the aggregated form of TauRD, while ignoring monomeric TauRD. The antiserum effectively inhibited TauRD filament formation and promoted the phagocytic degradation of TauRD aggregate fragments by microglia. The antiserum also specifically recognized pathological tau conformers in the human AD brain. Based on these results, we engineered a built-in flagellin-adjuvanted TauRD (FlaB-TauRD) vaccine and tested its efficacy in a P301S transgenic mouse model. Mucosal immunization with FlaB-TauRD improved quality of life, as indicated by the amelioration of memory deficits, and alleviated tauopathy progression. Notably, the survival of the vaccinated mice was dramatically extended. In conclusion, we developed a mucosal vaccine that exclusively targets pathological tau conformers and prevents disease progression.

3.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664585

RESUMO

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Assuntos
Ferro , Microambiente Tumoral , Animais , Ferro/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Lipocalina-2/imunologia , Feminino , Simbiose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Ativação de Macrófagos/imunologia , Camundongos Knockout
4.
Nat Commun ; 15(1): 46, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167804

RESUMO

Addressing age-related immunological defects through therapeutic interventions is essential for healthy aging, as the immune system plays a crucial role in controlling infections, malignancies, and in supporting tissue homeostasis and repair. In our study, we show that stimulating toll-like receptor 5 (TLR5) via mucosal delivery of a flagellin-containing fusion protein effectively extends the lifespan and enhances the healthspan of mice of both sexes. This enhancement in healthspan is evidenced by diminished hair loss and ocular lens opacity, increased bone mineral density, improved stem cell activity, delayed thymic involution, heightened cognitive capacity, and the prevention of pulmonary lung fibrosis. Additionally, this fusion protein boosts intestinal mucosal integrity by augmenting the surface expression of TLR5 in a certain subset of dendritic cells and increasing interleukin-22 (IL-22) secretion. In this work, we present observations that underscore the benefits of TLR5-dependent stimulation in the mucosal compartment, suggesting a viable strategy for enhancing longevity and healthspan.


Assuntos
Longevidade , Receptor 5 Toll-Like , Animais , Camundongos , Flagelina/metabolismo , Mucosa Intestinal/metabolismo , Longevidade/genética , Pulmão/metabolismo
5.
J Med Virol ; 95(12): e29309, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100632

RESUMO

The E6 and E7 proteins of specific subtypes of human papillomavirus (HPV), including HPV 16 and 18, are highly associated with cervical cancer as they modulate cell cycle regulation. The aim of this study was to investigate the potential antitumor effects of a messenger RNA-HPV therapeutic vaccine (mHTV) containing nononcogenic E6 and E7 proteins. To achieve this, C57BL/6j mice were injected with the vaccine via both intramuscular and subcutaneous routes, and the resulting effects were evaluated. mHTV immunization markedly induced robust T cell-mediated immune responses and significantly suppressed tumor growth in both subcutaneous and orthotopic tumor-implanted mouse model, with a significant infiltration of immune cells into tumor tissues. Tumor retransplantation at day 62 postprimary vaccination completely halted progression in all mHTV-treated mice. Furthermore, tumor expansion was significantly reduced upon TC-1 transplantation 160 days after the last immunization. Immunization of rhesus monkeys with mHTV elicited promising immune responses. The immunogenicity of mHTV in nonhuman primates provides strong evidence for clinical application against HPV-related cancers in humans. All data suggest that mHTV can be used as both a therapeutic and prophylactic vaccine.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/prevenção & controle , RNA Mensageiro/genética , Proteínas E7 de Papillomavirus/genética , Camundongos Endogâmicos C57BL , Vacinação/métodos , Imunização , Neoplasias do Colo do Útero/prevenção & controle
6.
Transl Cancer Res ; 11(6): 1595-1602, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836530

RESUMO

Background: Therapeutic cancer vaccines, which induce or amplify tumor-specific T cell responses, are a critical component of multiple combination cancer immunotherapy regimens. Innovative neoantigen identification continually prompts the development of vaccine platforms. However, vaccine monotherapy is not sufficient to eradicate tumors. Thus, therapeutic strategies combining cancer vaccines and treatment with other immune modulators have been expl, ored. Previously, we showed that flagellin has an excellent adjuvant activity to induce effective immune responses to co-administered peptide epitopes through TLR5 stimulation in mouse TC-1 tumor models and flagellin-expressing bacteria modulate the tumor microenvironment (TME) toward enhanced immunogenicity. Methods: Given that short- and long-peptides undergo different fates of internalization, processing, and MHC-restricted presentation by professional antigen-presenting cells (APCs), we compared the antitumor activity of flagellin-adjuvanted peptide vaccines by employing the E7 CD8 epitope short peptide (E7-SP49-57) and E7 long peptides (E7-LP2043-62 and E7-LP3543-77). Because combinations take center stage in immune checkpoint inhibitor (ICI) therapy, we evaluated the best E7 peptide vaccine component for combination with anti-PD-1 in the mouse TC-1 model. Results: Flagellin adjuvanted E7-LP35 vaccine (FlaB-LP35Vax) showed significantly higher antitumor activity than flagellin adjuvanted E7-SP vaccine (FlaB-SPVax) and flagellin adjuvanted E7-LP20 vaccine (FlaB-LP20Vax) in a mouse TC-1 tumor model. Coadministration of flagellin was essential for E7-mediated tumor suppression. PD-1 blockade enhanced the therapeutic efficacy of FlaB-LP35Vax but not FlaB-SPVax. Taken together, E7-LP35 is an optimal tumor antigen for flagellin-adjuvanted E7 cancer vaccines, and the combination of FlaB-LP35Vax with anti-PD-1 antibody treatment induced long-term antitumor immune responses. Conclusions: This result suggests that cooperation between CD4+ and CD8+ cell-mediated immune responses is essential for the success of combination therapy with cancer vaccines and ICIs.

7.
Biomaterials ; 286: 121542, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594837

RESUMO

Therapeutic cancer vaccines (TCVs) should induce robust tumor-specific T cell responses. To achieve this, TCVs incorporate T cell epitopes and strong adjuvants. Here, we report an all-in-one adjuvanted cancer vaccine platform that targets the intracellular compartment of dentritic cells and subsequently induces effective cytotoxic T cell responses. We screened a novel peptide (DCpep6) that specifically binds and transmits into CD11c+ cells through a novel in vivo phage biopanning. We then engineered a protein-based TCV (DEF) consisting of DCpep6 (D), an optimized HPV E7 tumor antigen (E), and a built-in flagellin adjuvant (F) as a single molecule. DEF was stably expressed, and each component was functional. In vivo-administered DEF rapidly biodistributed in draining LNs and internalized into CD11c+ cells. DEF immunization elicited strong antitumor T cell responses and provided long-term survival of TC-1 tumor-implanted mice. The DEF-mediated antitumor effect was abolished in NLRC4-/- mice. Taken together, we propose a protein-based all-in-one TCV platform that intracellularly codelivers tumor antigen and inflammasome activator to DCs to induce long-lasting antitumor T cell responses.


Assuntos
Vacinas Anticâncer , Neoplasias , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Citosol , Células Dendríticas , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo
8.
Emerg Microbes Infect ; 8(1): 1406-1415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31544591

RESUMO

Vibrio vulnificus is a halophilic estuarine bacterium causing severe opportunistic infections. To successfully establish an infection, V. vulnificus must adapt to redox fluctuations in vivo. In the present study, we show that deletion of V. vulnificus fexA gene caused hypersensitivity to acid and reactive oxygen species. The ΔfexA mutant exhibited severe in vivo survival defects. For deeper understanding the role of fexA gene on the successful V. vulnificus infection, we analyzed differentially expressed genes in ΔfexA mutant in comparison with wild type under aerobic, anaerobic or in vivo culture conditions by genome-scale DNA microarray analyses. Twenty-two genes were downregulated in the ΔfexA mutant under all three culture conditions. Among them, cydAB appeared to dominantly contribute to the defective phenotypes of the ΔfexA mutant. The fexA deletion induced compensatory point mutations in the cydAB promoter region over subcultures, suggesting essentiality. Those point mutations (PcydSMs) restored bacterial growth, motility, cytotoxicity ATP production and mouse lethality in the ΔfexA mutant. These results indicate that the cydAB operon, being regulated by FexA, plays a crucial role in V. vulnificus survival under redox-fluctuating in vivo conditions. The FexA-CydAB axis should serve an Achilles heel in the development of therapeutic regimens against V. vulnificus infection.


Assuntos
Proteínas de Bactérias/genética , Grupo dos Citocromos d/genética , Regulação Bacteriana da Expressão Gênica , Oxirredutases/genética , Vibrio vulnificus/genética , Ácidos/farmacologia , Animais , Animais Recém-Nascidos , Regulação para Baixo , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Dose Letal Mediana , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Mutação Puntual , Ratos , Vibrioses/microbiologia , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/crescimento & desenvolvimento
9.
PLoS Pathog ; 15(8): e1007767, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437245

RESUMO

The tad operons encode the machinery required for adhesive Flp (fimbrial low-molecular-weight protein) pili biogenesis. Vibrio vulnificus, an opportunistic pathogen, harbors three distinct tad loci. Among them, only tad1 locus was highly upregulated in in vivo growing bacteria compared to in vitro culture condition. To understand the pathogenic roles of the three tad loci during infection, we constructed single, double and triple tad loci deletion mutants. Interestingly, only the Δtad123 triple mutant cells exhibited significantly decreased lethality in mice. Ultrastructural observations revealed short, thin filamentous projections disappeared on the Δtad123 mutant cells. Since the pilin was paradoxically non-immunogenic, a V5 tag was fused to Flp to visualize the pilin protein by using immunogold EM and immunofluorescence microscopy. The Δtad123 mutant cells showed attenuated host cell adhesion, decreased biofilm formation, delayed RtxA1 exotoxin secretion and subsequently impaired translocation across the intestinal epithelium compared to wild type, which could be partially complemented with each wild type operon. The Δtad123 mutant was susceptible to complement-mediated bacteriolysis, predominantly via the alternative pathway, suggesting stealth hiding role of the Tad pili. Complement depletion by treating with anti-C5 antibody rescued the viable count of Δtad123 in infected mouse bloodstream to the level comparable to wild type strain. Taken together, all three tad loci cooperate to confer successful invasion of V. vulnificus into deeper tissue and evasion from host defense mechanisms, ultimately resulting in septicemia.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Ativação do Complemento/imunologia , Fímbrias Bacterianas/fisiologia , Vibrioses/microbiologia , Vibrio vulnificus/patogenicidade , Virulência , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos ICR , Óperon , Ratos , Ratos Sprague-Dawley , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/patologia , Vibrio vulnificus/genética , Vibrio vulnificus/crescimento & desenvolvimento
10.
Mucosal Immunol ; 12(2): 565-579, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30487648

RESUMO

Periodontitis is associated with a dysbiotic shift in the oral microbiome. Vaccine approaches to prevent microbial shifts from healthy to diseased state in oral biofilms would provide a fundamental therapeutic strategy against periodontitis. Since dental plaque formation is a polymicrobial and multilayered process, vaccines targeting single bacterial species would have limited efficacy in clinical applications. In this study, we developed a divalent mucosal vaccine consisting of a mixture of FlaB-tFomA and Hgp44-FlaB fusion proteins targeting virulence factors of inflammophilic bacteria Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. Introduction of peptide linkers between FlaB and antigen improved the stability and immunogenicity of engineered vaccine antigens. The intranasal immunization of divalent vaccine induced protective immune responses inhibiting alveolar bone loss elicited by F. nucleatum and P. gingivalis infection. The built-in flagellin adjuvant fused to protective antigens enhanced antigen-specific antibody responses and class switch recombination. The divalent vaccine antisera recognized natural forms of surface antigens and reacted with diverse clinical isolates of Fusobacterium subspecies and P. gingivalis. The antisera inhibited F. nucleatum-mediated biofilm formation, co-aggregation of P. gingivalis and Treponema denticola, and P. gingivalis-host cell interactions. Taken together, the built-in adjuvant-engineered mucosal vaccine provides a technological platform for multivalent periodontitis vaccines targeting dysbiotic microbiome.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Bacteroidaceae/imunologia , Disbiose/imunologia , Flagelina/imunologia , Infecções por Fusobacterium/imunologia , Fusobacterium nucleatum/fisiologia , Periodontite/imunologia , Porphyromonas gingivalis/fisiologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/genética , Feminino , Flagelina/genética , Humanos , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas , Fatores de Virulência/genética
11.
Hum Vaccin Immunother ; 13(12): 2794-2803, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28604268

RESUMO

Chronic periodontitis is caused by interactions between the oral polymicrobial community and host factors. Periodontal diseases are associated with dysbiotic shift in oral microbiota. Vaccination against periodontopathic bacteria could be a fundamental therapeutic to modulate polymicrobial biofilms. Because oral cavity is the site of periodontopathic bacterial colonization, mucosal vaccines should provide better protection than vaccines administered systemically. We previously reported that bacterial flagellin is an excellent mucosal adjuvant. In this study, we investigated whether mucosal immunization with a flagellin-adjuvanted polypeptide vaccine induces protective immune responses using a Porphyromonas gingivalis infection model. We used the Hgp44 domain polypeptide of Arg-gingipain A (RgpA) as a mucosal antigen. Intranasal (IN) immunization induced a significantly higher Hgp44-specific IgG titer in the serum of mice than sublingual (SL) administration. The co-administration of flagellin potentiated serum IgG responses for both the IN and SL vaccinations. On the other hand, the anti-Hgp44-specific IgA titer in the saliva was comparable between IN and SL vaccinations, suggesting SL administration as more compliant vaccination route for periodontal vaccines. The co-administration of flagellin significantly potentiated the secretory IgA response in saliva also. Furthermore, mice administered a mixture of Hgp44 and flagellin via the IN and SL routes exhibited significant reductions in alveolar bone loss induced by live P. gingivalis infections. An intranasally administered Hgp44-flagellin fusion protein induced a comparable level of Hgp44-specific antibody responses to the mixture of Hgp44 and flagellin. Overall, a flagellin-adjuvanted Hgp44 antigen would serve an important component for a multivalent mucosal vaccine against polymicrobial periodontitis.


Assuntos
Adesinas Bacterianas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , Infecções por Bacteroidaceae/prevenção & controle , Cisteína Endopeptidases/imunologia , Flagelina/administração & dosagem , Doenças Periodontais/prevenção & controle , Porphyromonas gingivalis/imunologia , Administração através da Mucosa , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Infecções por Bacteroidaceae/complicações , Modelos Animais de Doenças , Feminino , Cisteína Endopeptidases Gingipaínas , Imunoglobulina A/análise , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Doenças Periodontais/patologia , Saliva/imunologia , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
12.
Sci Transl Med ; 9(376)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179508

RESUMO

We report a method of cancer immunotherapy using an attenuated Salmonella typhimurium strain engineered to secrete Vibrio vulnificus flagellin B (FlaB) in tumor tissues. Engineered FlaB-secreting bacteria effectively suppressed tumor growth and metastasis in mouse models and prolonged survival. By using Toll-like receptor 5 (TLR5)-negative colon cancer cell lines, we provided evidence that the FlaB-mediated tumor suppression upon bacterial colonization is associated with TLR5-mediated host reactions in the tumor microenvironment. These therapeutic effects were completely abrogated in TLR4 and MyD88 knockout mice, and partly in TLR5 knockout mice, indicating that TLR4 signaling is a requisite for tumor suppression mediated by FlaB-secreting bacteria, whereas TLR5 signaling augmented tumor-suppressive host reactions. Tumor microenvironment colonization by engineered Salmonella appeared to induce the infiltration of abundant immune cells such as monocytes/macrophages and neutrophils via TLR4 signaling. Subsequent secretion of FlaB from colonizing Salmonella resulted in phenotypic and functional activation of intratumoral macrophages with M1 phenotypes and a reciprocal reduction in M2-like suppressive activities. Together, these findings provide evidence that nonvirulent tumor-targeting bacteria releasing multiple TLR ligands can be used as cancer immunotherapeutics.


Assuntos
Flagelina/metabolismo , Engenharia Genética , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Salmonella typhimurium/fisiologia , Animais , Polaridade Celular , Neoplasias do Colo/patologia , Contagem de Colônia Microbiana , Células HCT116 , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica , Neoplasias/patologia , Fenótipo , Transdução de Sinais , Receptor 5 Toll-Like/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncoimmunology ; 5(2): e1081328, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27057462

RESUMO

Cervical cancer is a high-incidence female cancer most commonly caused by human papilloma virus (HPV) infection of the genital mucosa. Immunotherapy targeting HPV-derived tumor antigens (TAs) has been widely studied in animal models and in patients. Because the female genital tract is a portal for the entry of HPV and a highly compartmentalized system, the development of topical vaginal immunotherapy in an orthotopic cancer model would provide an ideal therapeutic. Thus, we examined whether flagellin, a potent mucosal immunomodulator, could be used as an adjuvant for a topical therapeutic vaccine for female genital cancer. Intravaginal (IVAG) co-administration of the E6/E7 peptides with flagellin resulted in tumor suppression and long-term survival of tumor-bearing mice. In contrast to IVAG vaccination, intranasal (IN) or subcutaneous (SC) immunization did not induce significant tumor suppression in the same model. The vaginal adjuvant effect of the flagellin was completely abolished in Toll-like receptor-5 (TLR5) knock-out mice. IVAG immunization with the E6/E7 peptides plus flagellin induced the accumulation of CD4+ and CD8+ cells and the expression of T cell activation-related genes in the draining genital lymph nodes (gLNs). The co-administered flagellin elicited antigen-specific IFNγ production in the gLNs and spleen. The intravaginally administered flagellin was found in association with CD11c+ cells in the gLNs. Moreover, after immunization with a flagellin and the E6/E7 peptides, the TLR5 expression in gLN cells was significantly upregulated. These results suggest that flagellin serves as a potent vaginal adjuvant for a therapeutic peptide cancer vaccine through the activation of TLR5 signaling.

14.
Infect Immun ; 84(1): 254-65, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26527216

RESUMO

TonB systems actively transport iron-bound substrates across the outer membranes of Gram-negative bacteria. Vibrio vulnificus CMCP6, which causes fatal septicemia and necrotizing wound infections, possesses three active TonB systems. It is not known why V. vulnificus CMCP6 has maintained three TonB systems throughout its evolution. The TonB1 and TonB2 systems are relatively well characterized, while the pathophysiological function of the TonB3 system is still elusive. A reverse transcription-PCR (RT-PCR) study showed that the tonB1 and tonB2 genes are preferentially induced in vivo, whereas tonB3 is persistently transcribed, albeit at low expression levels, under both in vitro and in vivo conditions. The goal of the present study was to elucidate the raison d'être of these three TonB systems. In contrast to previous studies, we constructed in-frame single-, double-, and triple-deletion mutants of the entire structural genes in TonB loci, and the changes in various virulence-related phenotypes were evaluated. Surprisingly, only the tonB123 mutant exhibited a significant delay in killing eukaryotic cells, which was complemented in trans with any TonB operon. Very interestingly, we discovered that flagellum biogenesis was defective in the tonB123 mutant. The loss of flagellation contributed to severe defects in motility and adhesion of the mutant. Because of the difficulty of making contact with host cells, the mutant manifested defective RtxA1 toxin production, which resulted in impaired invasiveness, delayed cytotoxicity, and decreased lethality for mice. Taken together, these results indicate that a series of virulence defects in all three TonB systems of V. vulnificus CMCP6 coordinately complement each other for iron assimilation and full virulence expression by ensuring flagellar biogenesis.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/genética , Vibrio vulnificus/patogenicidade , Animais , Proteínas de Bactérias/biossíntese , Toxinas Bacterianas/biossíntese , Transporte Biológico/genética , Linhagem Celular Tumoral , Feminino , Flagelos/genética , Células HeLa , Humanos , Ferro/metabolismo , Proteínas de Membrana/biossíntese , Camundongos , Cavidade Peritoneal/microbiologia , Ratos , Ratos Sprague-Dawley , Vibrioses/microbiologia , Vibrio vulnificus/genética , Vibrio vulnificus/crescimento & desenvolvimento
15.
Infect Immun ; 82(1): 29-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24101693

RESUMO

Vibrio vulnificus is a halophilic pathogenic bacterium that is motile due to the presence of a single polar flagellum. V. vulnificus possesses a total of six flagellin genes organized into two loci (flaFBA and flaCDE). We proved that all six of the flagellin genes were transcribed, whereas only five (FlaA, -B, -C, -D, and -F) of the six flagellin proteins were detected. To understand roles of the six V. vulnificus flagellins in motility and virulence, mutants with single and multiple flagellin deletions were constructed. Mutations in flaB or flaC or the flaCDE locus resulted in a significant decrease in motility, adhesion, and cytotoxicity, whereas single mutations in the other flagellin genes or the flaFBA locus showed little or no effect. The motility was completely abolished only in the mutant lacking all six flagellin genes (flaFBA flaCDE). Surprisingly, a double mutation of flaB and flaD, a gene sharing 99% identity with the flaB at the amino acid level, resulted in the largest decrease in motility, adhesion, and cytotoxicity except for the mutant in which all six genes were deleted (the hexa mutant). Additionally, the 50% lethal doses (LD50s) of the flaB flaD and the flaFBA flaCDE mutants increased 23- and 91-fold in a mouse model, respectively, and the in vitro and in vivo invasiveness of the mutants was significantly decreased compared to that of the wild type. Taken together, the multiple flagellin subunits differentially contribute to the flagellum biogenesis and the pathogenesis of V. vulnificus, and among the six flagellin genes, flaB, flaD, and flaC were the most influential components.


Assuntos
Flagelina/genética , Vibrioses/fisiopatologia , Vibrio vulnificus/fisiologia , Animais , Aderência Bacteriana/fisiologia , Modelos Animais de Doenças , Flagelos/química , Flagelos/genética , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/fisiologia , Camundongos , Mutação , Vibrioses/genética , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade
16.
Vaccine ; 31(37): 3879-87, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23831323

RESUMO

Tumor antigen (TA)-specific immunotherapy is an emerging approach for cancer treatment. Potent adjuvants are prerequisites to the immunotherapy for overcoming the low immunogenicity of TAs. We previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, has potent adjuvant activity in various vaccination models. In this study, we investigated whether the FlaB protein could be a potent adjuvant for a human papillomavirus 16 E6 and E7 (E6/E7) peptide-based anticancer immunotherapy. We used an E6/E7-expressing TC-1 carcinoma implantation animal model and tested TA-specific immunomodulation by FlaB. We co-administered the E6/E7 peptide either with or without FlaB into TC-1 tumor-bearing mice and then analyzed the antitumor activity of the peptide. FlaB significantly potentiated specific antitumor immune responses elicited by the peptide immunization, as evidenced by retarded in vivo tumor growth and significantly prolonged survival. We noticed that TC-1 cells do not express Toll-like receptor 5 (TLR5) on their surface and the TLR5 signaling pathway in TC-1 cells was not responsible for the antitumor effect of FlaB. FlaB potentiated the CTL activity and Ag-specific IFN-γ production of CD8(+) T cells from the draining lymph node and spleen. In addition, this antitumor activity was abrogated following the in vivo depletion of CD8(+) T cells and in TLR5 knockout (KO) or MyD88 KO mice. These results suggest that flagellin could enhance TA-specific CD8(+) CTL immune responses through TLR5 stimulation in cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Flagelina/imunologia , Receptor 5 Toll-Like/imunologia , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/farmacologia , Feminino , Flagelina/genética , Flagelina/farmacologia , Humanos , Interferon gama/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Receptor 5 Toll-Like/metabolismo , Vacinas Sintéticas/genética , Vacinas Sintéticas/farmacologia
17.
Clin Exp Vaccine Res ; 2(2): 128-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23858404

RESUMO

PURPOSE: Human papillomavirus (HPV) is a significant cause of cervical cancer-related deaths worldwide. Because HPV is a sexually transmitted mucosal pathogen, enhancement of antigen-specific mucosal immune response likely serves good strategy for vaccination. However, mucosal vaccines generally do not induce strong enough immune responses. Previously we proved that a bacterial flagellin, Vibrio vulnificus FlaB, induce strong antigen-specific immune responses by stimulating the Toll-like receptor 5. In this study, we tested whether FlaB could serve as an effective mucosal adjuvant for a peptide-based HPV preventive cancer vaccine. MATERIALS AND METHODS: Mice were intranasally administered with a mixture of FlaB and E6/E7 protective peptides in 5-day interval for a total of two times. Five-days after the last vaccination, cellular immune responses of the vaccinated mice were analyzed. Tumor growth was also observed after a subcutaneous implantation of TC-1 cells bearing E6/E7 antigens. RESULTS: Intranasal administration of the E6/E7 peptide mixture with FlaB elicited a strong antigen-specific cytotoxic T lymphocyte activity and antigen-specific interferon-γ production from splenocytes and cervical lymph node cells. Furthermore, FlaB, as a mucosal adjuvant, conferred an excellent protection against TC-1 tumor challenge with high survival rates in E6/E7 immunized animals. CONCLUSION: These results indicate that FlaB can be a promising mucosal adjuvant for nasal HPV vaccine development.

18.
Gastroenterology ; 143(1): 145-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22475534

RESUMO

BACKGROUND & AIMS: Foxp3(+) T-regulatory cells (Tregs) maintain intestinal homeostasis under conditions of continuous challenge with inflammatory microbes. However, plasticity of the Treg population under certain conditions has been reported; Foxp3(+) Tregs can be converted to Foxp3(-) CD4(+) T cells. METHODS: We used mice with a T cell-induced colitis model to study the regulatory role of type I interferons (IFNs) in adaptive immunity. We transferred CD4(+)CD45RB(hi) (RB(hi)) T cells, with or without CD4(+)CD45RB(lo) CD25(+) T cells, from wild-type or IFN-αßR(-/-) mice into Rag1(-/-) recipients. We analyzed induction of colitis by flow cytometry, confocal microscopy, and enzyme-linked immunosorbent assay and reverse-transcription polymerase chain reaction analyses. IFN-αßR(-/-)Rag(-/-) mice were given injections of recombinant IFN-α following transfer of IFN-αßR(-/-) RB(hi) T cells and CD4(+)Foxp3(+) cells from Foxp3-eGFP mice. RESULTS: Signaling by type I IFNs was required for maintenance of Foxp3 expression and the suppressive activity of Tregs in mice. Transfer of CD4(+)CD45RB(lo)CD25(+) Tregs from IFN-αßR(-/-) mice did not prevent T-cell induction of colitis in mice. Foxp3 expression by Tregs transferred from IFN-αßR(-/-) mice was significantly lower than that of Tregs from wild-type mice. Administration of recombinant IFN-α reduced T cell-mediated colitis by increasing the number of Foxp3(+) Tregs and their suppressive functions. CONCLUSIONS: Type I IFNs regulate intestinal homeostasis by maintaining Foxp3 expression on Tregs in colons of mice under inflammatory conditions.


Assuntos
Colite/imunologia , Fatores de Transcrição Forkhead/biossíntese , Interferon Tipo I/imunologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
19.
Vaccine ; 30(2): 466-74, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22051136

RESUMO

The influenza virus, a mucosal pathogen that infects the respiratory tract, is a major global health issue. There have been attempts to mucosally administer inactivated influenza vaccines to induce both mucosal and systemic immune responses. However, mucosally administered inactivated influenza vaccine has low immunogenicity, which is partially due to the lack of an effective mucosal adjuvant. The development of a safe and effective mucosal adjuvant is a prerequisite to the practical use of a mucosal inactivated influenza vaccine. We have previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, when mixed with antigen and administered intranasally, exerts a strong mucosal adjuvant activity by stimulating the Toll-like receptor 5 (TLR5). In this study, we tested whether the FlaB protein could serve as an effective mucosal adjuvant for an inactivated trivalent influenza vaccine (TIV) manufactured for humans; in a murine vaccination model, this vaccine consists of A/Brisbane/59/07 (H1N1 subtype), A/Uruguay/716/07 (H3N2 subtype), and B/Florida/4/06 (B type). Intranasal co-administration of the TIV with FlaB induced prominent humoral responses as demonstrated by high influenza-specific IgA levels in both the mucosal secretions and serum and significant specific IgG induction in the systemic compartment. The FlaB protein significantly potentiated influenza-specific cytokine production by draining lymph node cells and splenocytes. The FlaB mucosal adjuvant conferred excellent protection against a lethal challenge with a live virulent virus with high hemagglutination inhibition (HAI) antibody (Ab) titers. The FlaB did not accumulate in the olfactory nerve and epithelium, guaranteeing against a retrograde uptake into the central nervous system. These results suggest that FlaB can be used as a promising mucosal adjuvant for nasal inactivated influenza vaccine development.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Flagelina/administração & dosagem , Imunidade nas Mucosas , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Administração Intranasal , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Imunoglobulina A/análise , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Mucosa Respiratória/imunologia , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA