Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Korean J Gastroenterol ; 84(2): 65-81, 2024 Aug 25.
Artigo em Coreano | MEDLINE | ID: mdl-39176462

RESUMO

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disease of the gastrointestinal tract. The introduction of biologics, particularly anti-interleukin (IL) agents, has revolutionized IBD treatment. This review summarizes the role of ILs in IBD pathophysiology and describes the efficacy and positioning of anti-IL therapies. We discuss the functions of key ILs in IBD and their potential as therapeutic targets. The review then discusses anti-IL therapies, focusing primarily on ustekinumab (anti-IL-12/23), risankizumab (anti-IL-23), and mirikizumab (anti-IL-23). Clinical trial data demonstrate their efficacy in inducing and maintaining remission in Crohn's disease and ulcerative colitis. The safety profiles of these agents are generally favorable. However, long-term safety data for newer agents are still limited. The review also briefly discusses emerging therapies such as guselkumab and brazikumab. Network meta-analyses suggest that anti-IL therapies perform well compared to other biological agents. These agents may be considered first- or second-line therapies for many patients, especially those with comorbidities or safety concerns. Anti-IL therapies represent a significant advancement in IBD treatment, offering effective and relatively safe options for patients with moderate to severe disease.


Assuntos
Anticorpos Monoclonais , Doenças Inflamatórias Intestinais , Ustekinumab , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Ustekinumab/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Interleucinas/metabolismo , Interleucinas/antagonistas & inibidores , Produtos Biológicos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Interleucina-23/antagonistas & inibidores , Interleucina-23/metabolismo , Doença de Crohn/tratamento farmacológico
2.
Diagnostics (Basel) ; 14(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001273

RESUMO

Diagnosing inflammatory bowel disease (IBD) can often be challenging, and differentiating between Crohn's disease and ulcerative colitis can be particularly difficult. Diagnostic procedures for IBD include laboratory tests, endoscopy, pathological tests, and imaging tests. Serological and stool tests can be easily performed in an outpatient setting and provide critical diagnostic clues. Although endoscopy is an invasive procedure, it offers essential diagnostic information and allows for tissue biopsy and therapeutic procedures. Video capsule endoscopy and device-assisted enteroscopy are endoscopic procedures used to evaluate the small bowel. In addition to endoscopy, magnetic resonance imaging, computed tomography, and ultrasound (US) are valuable tools for small bowel assessment. Among these, US is noninvasive and easily utilized, making its use highly practical in daily clinical practice. Endoscopic biopsy aids in the diagnosis of IBD and is crucial for assessing the histological activity of the disease, facilitating a thorough evaluation of disease remission, and aiding in the development of treatment strategies. Recent advances in artificial intelligence hold promise for enhancing various aspects of IBD management, including diagnosis, monitoring, and precision medicine. This review compiles current procedures and promising future tools for the diagnosis of IBD, providing comprehensive insights.

3.
Korean J Gastroenterol ; 83(6): 243-246, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918037

RESUMO

This case report presents the successful endoscopic submucosal dissection (ESD) of a well-differentiated esophageal liposarcoma in a 51-year-old male with persistent dysphagia. The cause was initially diagnosed as a 10 cm pedunculated lesion extending from the upper esophageal sphincter to the mid-esophagus. An ESD was chosen over traditional surgery because it is less invasive. The procedure involved a precise submucosal injection and excision with special techniques to manage bleeding from a central vessel. Despite the extraction challenges owing to the size of the lesion, it was successfully removed orally. A histopathological examination of the 8.3×4.2×2.3 cm specimen revealed the characteristic features of a well-differentiated liposarcoma, including MDM2 and CDK4 positivity. The follow-up revealed no recurrence, and active surveillance has been performed since. This report highlights the versatility of ESD in treating significant esophageal tumors and provides evidence for its efficacy as a minimally invasive alternative.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Lipossarcoma , Humanos , Masculino , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/diagnóstico , Pessoa de Meia-Idade , Lipossarcoma/cirurgia , Lipossarcoma/patologia , Lipossarcoma/diagnóstico , Tomografia Computadorizada por Raios X , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Esofagoscopia
4.
J Clin Med ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892937

RESUMO

Background/Objectives: Endoscopic papillectomy (EP) is the preferred treatment for ampullary tumors because it has fewer side effects than surgical removal. This study retrospectively compared a new anchoring EP method (A-EP) with the conventional (C-EP) approach. Methods: Ninety-nine patients who underwent EP at a single medical institution between 2009 and 2021 were retrospectively reviewed. In all patients, the indications for EP were pathological adenoma with <10 mm of biliary invasion and a tumor diameter <30 mm on endoscopic ultrasonography. The exclusion criteria were antiplatelet/anticoagulant use, previous upper GI surgery, or prior biliary/pancreatic endoscopic therapy. One expert endoscopist performed the two types of EPs, A-EP and C-EP. Results: Sixty-two patients underwent A-EP, and 37 underwent C-EP. There were no significant differences in baseline characteristics, such as sex, age, tumor size, and ductal invasion on endoscopic ultrasound. The A-EP group had higher en bloc resection rates (95.2% vs. 78.4%, p = 0.010). Although the difference was not statistically significant, it tended towards fewer incidences of pancreatitis (p = 0.081) and duct stricture (p = 0.081). The recurrence rate was lower in the A-EP group (8.1% vs. 37.8%, p = 0.000). There were no significant differences between the two groups regarding the follow-up period (A-EP vs. C-EP, 725 vs. 1045 days, p = 0.109) or the days of recurrence (A-EP vs. C-EP, 341 vs. 562 days, p = 0.551). Conclusions: A-EP showed better outcomes than C-EP in terms of en bloc resection and recurrence rates, providing evidence for the efficacy of this novel EP method.

5.
Immune Netw ; 24(2): e7, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38725670

RESUMO

Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

6.
Biochem Biophys Res Commun ; 709: 149823, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38569245

RESUMO

Avian pathogenic Escherichia coli (APEC) causes enormous economic losses and is a primary contributor to the emergence of multidrug resistance (MDR)-related problems in the poultry industry. Bacteriophage (phage) therapy has been successful in controlling MDR, but phage-resistant variants have rapidly emerged through the horizontal transmission of diverse phage defense systems carried on mobile genetic elements. Consequently, while multiple phage cocktails are recommended for phage therapy, there is a growing need to explore simpler and more cost-effective phage treatment alternatives. In this study, we characterized two novel O78-specific APEC phages, φWAO78-1 and φHAO78-1, in terms of their morphology, genome, physicochemical stability and growth kinetics. Additionally, we assessed the susceptibility of thirty-two O78 APEC strains to these phages. We analyzed the roles of highly susceptible cells in intestinal settlement and fecal shedding (susceptible cell-assisted intestinal settlement and shedding, SAIS) of phages in chickens via coinoculation with phages. Furthermore, we evaluated a new strategy, susceptible cell-assisted resistant cell killing (SARK), by comparing phage susceptibility between resistant cells alone and a mixture of resistant and highly susceptible cells in vitro. As expected, high proportions of O78 APEC strains had already acquired multiple phage defense systems, exhibiting considerable resistance to φWAO78-1 and φHAO78-1. Coinoculation of highly susceptible cells with phages prolonged phage shedding in feces, and the coexistence of susceptible cells markedly increased the phage susceptibility of resistant cells. Therefore, the SAIS and SARK strategies were demonstrated to be promising both in vivo and in vitro.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Bacteriófagos/genética , Galinhas , Escherichia coli/genética , Colífagos , Morte Celular , Doenças das Aves Domésticas/terapia
7.
Vaccines (Basel) ; 12(1)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276678

RESUMO

Four mutants varying the length of the G and SH genes, including a G-truncated mutant (ΔG) and three G/SH-truncated mutants (ΔSH/G-1, ΔSH/G-2, and ΔSH/G-3), were generated via serially passaging the avian metapneumovirus strain SNU21004 into the cell lines Vero E6 and DF-1 and into embryonated chicken eggs. The mutant ΔG particles resembled parental virus particles except for the variance in the density of their surface projections. G and G/SH truncation significantly affected the viral replication in chickens' tracheal ring culture and in infected chickens but not in the Vero E6 cells. In experimentally infected chickens, mutant ΔG resulted in the restriction of viral replication and the attenuation of the virulence. The mutants ΔG and ΔSH/G-1 upregulated three interleukins (IL-6, IL-12, and IL-18) and three interferons (IFNα, IFNß, and IFNγ) in infected chickens. In addition, the expression levels of innate immunity-related genes such as Mda5, Rig-I, and Lgp2, in BALB/c mice were also upregulated when compared to the parental virus. Immunologically, the mutant ΔG induced a strong, delayed humoral immune response, while the mutant ΔSH/G-1 induced no humoral immune response. Our findings indicate the potential of the mutant ΔG but not the mutant ΔSH/G-1 as a live attenuated vaccine candidate.

8.
EBioMedicine ; 99: 104932, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118400

RESUMO

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Assuntos
COVID-19 , Melfalan , gama-Globulinas , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Furões , Brônquios , Fator de Crescimento Transformador beta , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
10.
Antibiotics (Basel) ; 12(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38136748

RESUMO

Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry industry, and O78 serogroup APEC strains are prevalent in chickens. In this study, we aimed to understand the evolutionary pathways and relationships between O78 APEC and other E. coli strains. To trace these evolutionary pathways, we classified 3101 E. coli strains into 306 subgenotypes according to the numbers and types of single nucleotide polymorphisms (RST0 to RST63-1) relative to the consensus sequence (RST0) of the RNA polymerase beta subunit gene and performed network analysis. The E. coli strains showed four apparently different evolutionary pathways (I-1, I-2, I-3, and II). The thirty-two Korean O78 APEC strains tested in this study were classified into RST4-4 (45.2%), RST3-1 (32.3%), RST21-1 (12.9%), RST4-5 (3.2%), RST5-1 (3.2%), and RST12-6 (3.2%), and all RSTs except RST21-1 (I-2) may have evolved through the same evolutionary pathway (I-1). A comparative genomic study revealed the highest relatedness between O78 strains of the same RST in terms of genome sequence coverage/identity and the spacer sequences of CRISPRs. The early-appearing RST3-1 and RST4-4 prevalence among O78 APEC strains may reflect the early settlement of O78 E. coli in chickens, after which these bacteria accumulated virulence and antibiotic resistance genes to become APEC strains. The zoonotic risk of the conventional O78 APEC strains is low at present, but the appearance of genetically distinct and multiple virulence gene-bearing RST21-1 O78 APEC strains may alert us to a need to evaluate their virulence in chickens as well as their zoonotic risk.

11.
Front Immunol ; 14: 1263646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264643

RESUMO

Introduction: Previously, we achieved large-scale expansion of bone marrow-derived suppressor cells (MDSCs) derived from cluster of differentiation (CD)34+ cells cultured in human umbilical cord blood (hUCB) and demonstrated their immunomodulatory properties. In the present study, we assessed the therapeutic efficacy of hUCB-MDSCs in atopic dermatitis (AD). Methods: Dermatophagoides farinae (Df)-induced NC/Nga mice (clinical score of 7) were treated with hUCB-MDSCs or a control drug. The mechanisms underlying the therapeutic effects of hUCB-MDSCs were evaluated. Results and discussion: hUCB-MDSCs demonstrated immunosuppressive effects in both human and mouse CD4+ T cells. hUCB-MDSCs significantly reduced the clinical severity scores, which were associated with histopathological changes, and reduced inflammatory cell infiltration, epidermal hyperplasia, and fibrosis. Furthermore, hUCB-MDSCs decreased the serum levels of immunoglobulin E, interleukin (IL)-4, IL-5, IL-13, IL-17, thymus- and activation-regulated chemokines, and thymic stromal lymphopoietin. Additionally, they altered the expression of the skin barrier function-related proteins filaggrin, involucrin, loricrin, cytokeratin 10, and cytokeratin 14 and suppressed the activation of Df-restimulated T-cells via cell-cell interactions. hUCB-MDSCs promoted skin recovery and maintained their therapeutic effect even after recurrence. Consequently, hUCB-MDSC administration improved Df-induced AD-like skin lesions and restored skin barrier function. Our findings support the potential of hUCB-MDSCs as a novel treatment strategy for AD.


Assuntos
Dermatite Atópica , Humanos , Animais , Camundongos , Sangue Fetal , Células Mieloides , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA