Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PeerJ ; 10: e13287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509963

RESUMO

Chronic stress is commonly associated with enhanced abdominal pain (visceral hypersensitivity), but the cellular mechanisms underlying how chronic stress induces visceral hypersensitivity are poorly understood. In this study, we examined changes in gene expression in colon epithelial cells from a rat model using RNA-sequencing to examine stress-induced changes to the transcriptome. Following chronic stress, the most significantly up-regulated genes included Atg16l1, Coq10b, Dcaf13, Nat2, Ptbp2, Rras2, Spink4 and down-regulated genes including Abat, Cited2, Cnnm2, Dab2ip, Plekhm1, Scd2, and Tab2. The primary altered biological processes revealed by network enrichment analysis were inflammation/immune response, tissue morphogenesis and development, and nucleosome/chromatin assembly. The most significantly down-regulated process was the digestive system development/function, whereas the most significantly up-regulated processes were inflammatory response, organismal injury, and chromatin remodeling mediated by H3K9 methylation. Furthermore, a subpopulation of stressed rats demonstrated very significantly altered gene expression and transcript isoforms, enriched for the differential expression of genes involved in the inflammatory response, including upregulation of cytokine and chemokine receptor gene expression coupled with downregulation of epithelial adherens and tight junction mRNAs. In summary, these findings support that chronic stress is associated with increased levels of cytokines and chemokines, their downstream signaling pathways coupled to dysregulation of intestinal cell development and function. Epigenetic regulation of chromatin remodeling likely plays a prominent role in this process. Results also suggest that super enhancers play a primary role in chronic stress-associated intestinal barrier dysfunction.


Assuntos
Montagem e Desmontagem da Cromatina , Gastroenteropatias , Ratos , Animais , Epigênese Genética , Hiperalgesia/metabolismo , Inflamação/genética , Colo/metabolismo , Estresse Psicológico/genética , Células Epiteliais/metabolismo , Gastroenteropatias/metabolismo , Expressão Gênica
2.
Neurogastroenterol Motil ; 32(12): e13941, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32743845

RESUMO

BACKGROUND: Chronic stress is associated with activation of the HPA axis, elevation in pro-inflammatory cytokines, decrease in intestinal epithelial cell tight junction (TJ) proteins, and enhanced visceral pain. It is unknown whether epigenetic regulatory pathways play a role in chronic stress-induced intestinal barrier dysfunction and visceral hyperalgesia. METHODS: Young adult male rats were subjected to water avoidance stress ± H3K9 methylation inhibitors or siRNAs. Visceral pain response was assessed. Differentiated Caco-2/BBE cells and human colonoids were treated with cortisol or IL-6 ± antagonists. Expression of TJ, IL-6, and H3K9 methylation status at gene promoters was measured. Transepithelial electrical resistance and FITC-dextran permeability were evaluated. KEY RESULTS: Chronic stress induced IL-6 up-regulation prior to a decrease in TJ proteins in the rat colon. The IL-6 level inversely correlated with occludin expression. Treatment with IL-6 decreased occludin and induced visceral hyperalgesia. Chronic stress and IL-6 increased H3K9 methylation and decreased transcriptional GR binding to the occludin gene promoter, leading to down-regulation of protein expression and increase in paracellular permeability. Intrarectal administration of a H3K9 methylation antagonist prevented chronic stress-induced visceral hyperalgesia in the rat. In a human colonoid model, cortisol decreased occludin expression, which was prevented by the GR antagonist RU486, and IL-6 increased H3K9 methylation and decreased TJ protein levels, which were prevented by inhibitors of H3K9 methylation. CONCLUSIONS & INFERENCES: Our findings support a novel role for methylation of the repressive histone H3K9 to regulate chronic stress, pro-inflammatory cytokine-mediated reduction in colon TJ protein levels, and increase in paracellular permeability and visceral hyperalgesia.


Assuntos
Colo/metabolismo , Histonas/metabolismo , Interleucina-6/biossíntese , Permeabilidade , Estresse Psicológico/metabolismo , Dor Visceral/metabolismo , Animais , Células CACO-2 , Doença Crônica , Epitélio/metabolismo , Histonas/antagonistas & inibidores , Humanos , Masculino , Metilação , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Dor Visceral/etiologia , Dor Visceral/psicologia
3.
Neurogastroenterol Motil ; 31(2): e13477, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30284340

RESUMO

BACKGROUND: Chronic psychological stress is associated with increased intestinal epithelial permeability and visceral hyperalgesia. Lubiprostone, an agonist for chloride channel-2, promotes secretion and accelerates restoration of injury-induced epithelial barrier dysfunction. The mechanisms underlying how lubiprostone regulates colon epithelial barrier function and visceral hyperalgesia in chronic stress remain unknown. METHODS: Male rats were subjected to water avoidance stress for 10 consecutive days. Lubiprostone was administered daily during the stress phase. Visceromotor response to colorectal distension was measured. Human colon crypts and cell lines were treated with cortisol and lubiprostone. The transepithelial electrical resistance and FITC-dextran permeability were assayed. Chromatin immunoprecipitation was conducted to assess glucocorticoid receptor binding at tight junction gene promoters. KEY RESULTS: Lubiprostone significantly decreased chronic stress-induced visceral hyperalgesia in the rat (P < 0.05; n = 6). WA stress decreased occludin and claudin-1 and increased claudin-2 in rat colon crypts, which was prevented by lubiprostone. Cortisol treatment induced similar alterations of tight junction protein expression in Caco-2/BBE cells (P < 0.05) and significantly changed paracellular permeability in monolayers (P < 0.01). These changes were blocked by lubiprostone. Glucocorticoid receptor and its binding at occludin promoter region were decreased in cortisol-treated cells and human colon crypts, which was largely reversed by lubiprostone. In rat colonic cells, glucocorticoid receptor and its co-chaperone proteins were down-regulated after corticosterone treatment and lubiprostone reversed these changes. CONCLUSIONS & INFERENCES: Lubiprostone preferentially prevents chronic stress-induced alterations of intestinal epithelial tight junctions, barrier function, and visceral hyperalgesia that was associated with modulation of glucocorticoid receptor expression and function.


Assuntos
Agonistas dos Canais de Cloreto/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Lubiprostona/farmacologia , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico , Proteínas de Junções Íntimas/efeitos dos fármacos , Animais , Canais de Cloro CLC-2 , Células CACO-2 , Linhagem Celular , Colo/efeitos dos fármacos , Colo/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Permeabilidade , Ratos , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Proteínas de Junções Íntimas/metabolismo , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia , Dor Visceral/psicologia
4.
Pain ; 159(9): 1777-1789, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29912860

RESUMO

In humans, chronic psychological stress is associated with increased intestinal paracellular permeability and visceral hyperalgesia, which is recapitulated in the chronic intermittent water avoidance stress (WAS) rat model. However, it is unknown whether enhanced visceral pain and permeability are intrinsically linked and correlate. Treatment of rats with lubiprostone during WAS significantly reduced WAS-induced changes in intestinal epithelial paracellular permeability and visceral hyperalgesia in a subpopulation of rats. Lubiprostone also prevented WAS-induced decreases in the epithelial tight junction protein, occludin (Ocln). To address the question of whether the magnitude of visceral pain correlates with the extent of altered intestinal permeability, we measured both end points in the same animal because of well-described individual differences in pain response. Our studies demonstrate that visceral pain and increased colon permeability positively correlate (0.6008, P = 0.0084). Finally, exposure of the distal colon in control animals to Ocln siRNA in vivo revealed that knockdown of Ocln protein inversely correlated with increased paracellular permeability and enhanced visceral pain similar to the levels observed in WAS-responsive rats. These data support that Ocln plays a potentially significant role in the development of stress-induced increased colon permeability. We believe this is the first demonstration that the level of chronic stress-associated visceral hyperalgesia directly correlates with the magnitude of altered colon epithelial paracellular permeability.


Assuntos
Gastroenteropatias/diagnóstico , Hiperalgesia/fisiopatologia , Mucosa Intestinal/metabolismo , Estresse Psicológico/fisiopatologia , Dor Visceral/fisiopatologia , Animais , Gastroenteropatias/metabolismo , Gastroenteropatias/fisiopatologia , Mucosa Intestinal/efeitos dos fármacos , Lubiprostona/farmacologia , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
5.
Sci Rep ; 7(1): 4502, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674421

RESUMO

Chronic stress and elevated glucocorticoid hormone are associated with decreases in the intestinal epithelial tight junction protein claudin-1 (CLDN1). Human/rat CLDN1 promoters contain glucocorticoid response elements (GREs) and adjacent transcription repressor HES1 binding N-boxes. Notch signaling target HES1 expression was high and glucocorticoid receptor (NR3C1) low at the crypt base and the pattern reversed at the crypt apex. Chronic stress reduced overall rat colon HES1 and NR3C1 that was associated with CLDN1 downregulation. Chromatin-immunoprecipitation experiments showed that HES1 and NR3C1 bind to the CLDN1 promoter in rat colon crypts. The binding of NR3C1 but not HES1 to CLDN1 promoter significantly decreased in chronically stressed animals, which was prevented by the NR3C1 antagonist RU486. We employed the 21-day Caco-2/BBe cell model to replicate cell differentiation along the crypt axis. HES1 siRNA treatment early in differentiation increased CLDN1. In contrast, stress levels of cortisol decreased CLDN1 in late differentiation stage but not in the early stage. HES1 was high, whereas NR3C1 and CLDN1 were low in the early stage which reversed in the late stage, e.g. HES1/NR3C1 binding to CLDN1 promoter demonstrates a dynamic and reciprocal pattern. These results suggest that chronic stress impairs colon epithelium homeostasis and barrier function via different mechanisms along the crypt axis.


Assuntos
Mucosa Intestinal/metabolismo , Estresse Fisiológico , Estresse Psicológico , Animais , Células CACO-2 , Diferenciação Celular/genética , Claudina-1/genética , Claudina-1/metabolismo , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição HES-1/metabolismo
6.
Gut Microbes ; 8(1): 33-45, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28059627

RESUMO

Stress is known to perturb the microbiome and exacerbate irritable bowel syndrome (IBS) associated symptoms. Characterizing structural and functional changes in the microbiome is necessary to understand how alterations affect the biomolecular environment of the gut in IBS. Repeated water avoidance (WA) stress was used to induce IBS-like symptoms in rats. The colon-mucosa associated microbiome was characterized in 13 stressed and control animals by 16S sequencing. In silico analysis of the functional domains of microbial communities was done by inferring metagenomic profiles from 16S data. Microbial communities and functional profiles were compared between conditions. WA animals exhibited higher α-diversity and moderate divergence in community structure (ß-diversity) compared with controls. Specific clades and taxa were consistently and significantly modified in the WA animals. The WA microbiome was particularly enriched in Proteobacteria and depleted in several beneficial taxa. A decreased capacity in metabolic domains, including energy- and lipid-metabolism, and an increased capacity for fatty acid and sulfur metabolism was inferred for the WA microbiome. The stressed condition favored the proliferation of a greater diversity of microbes that appear to be functionally similar, resulting in a functionally poorer microbiome with implications for epithelial health. Taxa, with known beneficial effects, were found to be depleted, which supports their relevance as therapeutic agents to restore microbial health. Microbial sulfur metabolism may form a key component of visceral nerve sensitization pathways and is therefore of interest as a target metabolic domain in microbial ecological restoration.


Assuntos
Bactérias/isolamento & purificação , Colo/microbiologia , Microbioma Gastrointestinal , Síndrome do Intestino Irritável/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/microbiologia , Masculino , Metagenômica , Ratos , Ratos Sprague-Dawley
8.
Exp Neurol ; 273: 301-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26408049

RESUMO

Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. In this study, we compared somatosensory and visceral hyperalgesia with respect to differential responses of peripheral pain regulatory pathways in a rat model of chronic, intermittent stress. We found that chronic stress induced reciprocal changes in the endocannabinoid 2-AG (increased) and endocannabinoid degradation enzymes COX-2 and FAAH (decreased), associated with down-regulation of CB1 and up-regulation of TRPV1 receptors in L6-S2 DRG but not L4-L5 DRG neurons. In contrast, sodium channels Nav1.7 and Nav1.8 were up-regulated in L4-L5 but not L6-S2 DRGs in stressed rats, which was reproduced in control DRGs treated with corticosterone in vitro. The reciprocal changes of CB1, TRPV1 and sodium channels were cell-specific and observed in the sub-population of nociceptive neurons. Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord.


Assuntos
Vias Aferentes/fisiopatologia , Hiperalgesia/etiologia , Neuralgia , Estresse Psicológico/complicações , Dor Visceral , Animais , Ácidos Araquidônicos/metabolismo , Corticosterona/sangue , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Potencial Evocado Motor/fisiologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicerídeos/metabolismo , Intestino Grosso/inervação , Masculino , Neuralgia/complicações , Neuralgia/etiologia , Neuralgia/patologia , Limiar da Dor/fisiologia , Estimulação Física/efeitos adversos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Estresse Psicológico/sangue , Canais de Cátion TRPV/metabolismo , Dor Visceral/etiologia , Dor Visceral/metabolismo , Dor Visceral/patologia
9.
Gastroenterology ; 148(1): 148-157.e7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263804

RESUMO

BACKGROUND & AIMS: Chronic stress alters the hypothalamic-pituitary-adrenal axis, increases gut motility, and increases the perception of visceral pain. We investigated whether epigenetic mechanisms regulate chronic stress-induced visceral pain in the peripheral nervous systems of rats. METHODS: Male rats were subjected to 1 hour of water avoidance stress each day, or given daily subcutaneous injections of corticosterone, for 10 consecutive days. L4-L5 and L6-S2 dorsal root ganglia (DRG) were collected and compared between stressed and control rats (placed for 1 hour each day in a tank without water). Levels of cannabinoid receptor 1 (CNR1), DNA (cytosine-5-)-methyltransferase 1 (DNMT1), transient receptor potential vanilloid type 1 (TRPV1), and EP300 were knocked down in DRG neurons in situ with small interfering RNAs. We measured DNA methylation and histone acetylation at genes encoding the glucocorticoid receptor (NR3C1), CNR1, and TRPV1. Visceral pain was measured in response to colorectal distention. RESULTS: Chronic stress was associated with increased methylation of the Nr3c1 promoter and reduced expression of this gene in L6-S2, but not L4-L5, DRGs. Stress also was associated with up-regulation in DNMT1-associated methylation of the Cnr1 promoter and down-regulation of glucocorticoid-receptor-mediated expression of CNR1 in L6-S2, but not L4-L5, DRGs. Concurrently, chronic stress increased expression of the histone acetyltransferase EP300 and increased histone acetylation at the Trpv1 promoter and expression of the TRPV1 receptor in L6-S2 DRG neurons. Knockdown of DNMT1 and EP300 in L6-S2 DRG neurons of rats reduced DNA methylation and histone acetylation, respectively, and prevented chronic stress-induced increases in visceral pain. CONCLUSIONS: Chronic stress increases DNA methylation and histone acetylation of genes that regulate visceral pain sensation in the peripheral nervous system of rats. Blocking epigenetic regulatory pathways in specific regions of the spinal cord might be developed to treat patients with chronic abdominal pain.


Assuntos
Dor Abdominal/genética , Epigênese Genética , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Estresse Psicológico/genética , Dor Visceral/genética , Dor Abdominal/diagnóstico , Dor Abdominal/metabolismo , Dor Abdominal/fisiopatologia , Dor Abdominal/psicologia , Acetilação , Animais , Doença Crônica , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Gânglios Espinais/fisiopatologia , Regulação da Expressão Gênica , Histonas , Hiperalgesia/diagnóstico , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Masculino , Medição da Dor , Limiar da Dor , Regiões Promotoras Genéticas , Interferência de RNA , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Transcrição Gênica , Dor Visceral/diagnóstico , Dor Visceral/metabolismo , Dor Visceral/fisiopatologia , Dor Visceral/psicologia
10.
Gastroenterology ; 140(2): 627-637.e4, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21070780

RESUMO

BACKGROUND & AIMS: Chronic stress is associated with visceral hyperalgesia in functional gastrointestinal disorders. We investigated whether corticosterone plays a role in chronic psychological stress-induced visceral hyperalgesia. METHODS: Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous corticosterone injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486 and cannabinoid-receptor agonist WIN55,212-2. The visceromotor response to colorectal distension was measured. Receptor protein levels were measured and whole-cell patch-clamp recordings were used to assess transient receptor potential vanilloid type 1 (TRPV1) currents in L6-S2 dorsal root ganglion (DRG) neurons. Mass spectrometry was used to measure endocannabinoid anandamide content. RESULTS: Chronic WA stress was associated with visceral hyperalgesia in response to colorectal distension, increased stool output and reciprocal changes in cannabinoid receptor 1 (CB1) (decreased) and TRPV1 (increased) receptor expression and function. Treatment of WA stressed rats with RU-486 prevented these changes. Control rats treated with serial injections of corticosterone in situ showed a significant increase in serum corticosterone associated with visceral hyperalgesia, enhanced anandamide content, increased TRPV1, and decreased CB1 receptor protein levels, which were prevented by co-treatment with RU-486. Exposure of isolated control L6-S2 DRGs in vitro to corticosterone reproduced the changes in CB1 and TRPV1 receptors observed in situ, which was prevented by co-treatment with RU-486 or WIN55,212-2. CONCLUSIONS: These results support a novel role for corticosterone to modulate CB1 and TRPV1-receptor pathways in L6-S2 DRGs in the chronic WA stressed rat, which contributes to visceral hyperalgesia observed in this model.


Assuntos
Corticosterona/fisiologia , Hiperalgesia/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Estresse Psicológico/complicações , Canais de Cátion TRPV/metabolismo , Animais , Benzoxazinas/farmacologia , Doença Crônica , Colo/efeitos dos fármacos , Colo/metabolismo , Corticosterona/farmacologia , Modelos Animais de Doenças , Fezes , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/etiologia , Masculino , Mifepristona/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/análise , Receptores de Glucocorticoides/antagonistas & inibidores , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/metabolismo , Estresse Psicológico/metabolismo , Canais de Cátion TRPV/análise
11.
Gastroenterology ; 135(2): 601-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18582468

RESUMO

BACKGROUND & AIMS: Activation of autoimmune pathways has been implicated as a contributing mechanism to the pathophysiology in some patients with chronic intestinal pseudoobstruction (CIP). In this study we tested the hypothesis that sera from a subpopulation of patients with CIP contain autoantibodies that activate autophagy via a Fas-dependent pathway in cultured human neuroblastoma SH-Sy5Y cells. METHODS: Twenty-five patients with established neurogenic CIP (20 women, 5 men; age range, 21-57 y) were investigated and circulating antineuronal antibodies to enteric neurons were found in 6 (24%) patients. The ability of antineuronal antibodies to induce autophagy was assessed using immunohistochemical, Western immunoblot, and molecular techniques. The presence of autophagosomes was monitored using a specific immunohistochemical marker, anti-microtubule-associated light chain immunoreactivity, and colocalization with mitochondrial- and Fas-activated death domain immunofluorescence using appropriate antibodies in cells exposed to sera from matched healthy controls and patients with neurogenic CIP. RESULTS: Exposure of SH-Sy5Y cells to sera from patients with CIP containing antineuronal antibodies revealed increased binding of autoimmune immunoglobulin (IgG class) to the surface of SH-Sy5Y cells and increased formation of autophagosomes showing colocalization with mitochondria and Fas-activated death domain compared with control sera. Pretreatment of sera with either protein L agarose beads or a soluble Fas receptor (extracellular domain) chimera prevented the stimulation of autophagy. CONCLUSIONS: We provide novel evidence that antineuronal antibodies may contribute to neuronal dysfunction observed in a subset of patients with neurogenic CIP via autoantibody-mediated activation of autophagy involving the Fas receptor complex.


Assuntos
Formação de Anticorpos , Autoanticorpos/sangue , Autofagia , Sistema Nervoso Entérico/imunologia , Pseudo-Obstrução Intestinal/imunologia , Proteínas do Tecido Nervoso/imunologia , Neurônios/imunologia , Receptor fas/metabolismo , Adulto , Western Blotting , Estudos de Casos e Controles , Linhagem Celular Tumoral , Doença Crônica , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/fisiopatologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Humanos , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Pseudo-Obstrução Intestinal/fisiopatologia , Masculino , Manometria , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Neurônios/metabolismo , Neurônios/patologia
12.
Neuroreport ; 19(3): 265-9, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18303564

RESUMO

We reported previously that sera from patients with type 2 diabetes and neuropathy induce autophagy in human neuroblastoma (SH-SY5Y) cells. Here we report that enriched immunoglobulin fractions from a subpopulation of these patients induce autophagy and colocalization with Fas-activated death domain (FADD), a component of the Fas-activated death domain receptor signaling pathway. These effects were replicated by treatment of SY5Y cells with Fas ligand, tumor necrosis factor alpha and an agonist anti-Fas antibody. Preincubation of these sera with a soluble Fas receptor chimera (extracellular domain) markedly decreased the stimulation of autophagy. The results suggest that sera from subset of individuals with type 2 diabetes and neuropathy contain autoantibodies that activate the Fas cascade.


Assuntos
Autoanticorpos/imunologia , Autofagia/genética , Autofagia/fisiologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Neuropatias Diabéticas/imunologia , Neuropatias Diabéticas/patologia , Receptor fas/fisiologia , Adulto , Western Blotting , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Imunoglobulina M/biossíntese , Imunoglobulina M/genética , Masculino , Neuroblastoma/patologia , Receptor fas/genética
13.
J Neurochem ; 105(4): 1212-22, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18182051

RESUMO

Chronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy. In this study, we examined the effects of TRPV1 activation on cell injury pathways in this subpopulation of neurons in the streptozotocin-induced diabetic rat model. Large DRG neurons from diabetic (6-8 weeks) rats displayed increased oxidative stress and activation of cell injury markers compared with healthy controls. Capsaicin (CAP) treatment induced decreased labeling of MitoTracker Red and increased cytosolic cytochrome c and activation of caspase 3 in large neurons isolated from diabetic rats. CAP treatment also induced oxidative stress in large diabetic DRG neurons, which was blocked by pre-treatment with caspase or calpain inhibitor. In addition, both mu-calpain expression and calpain activity were significantly increased in DRG neurons from diabetic rats after CAP treatment. Treatment with capsazepine, a competitive TRPV1 antagonist, markedly reduced these abnormalities in vitro and prevented activation of cell injury in large DRG neurons in diabetic rats in vivo. These results suggest that activation of the TRPV1 receptor activates pathways associated with caspase-dependent and calpain-dependent stress in large DRG neurons in STZ-diabetic rats. Activation of the TRPV1 receptor may contribute to preferential neuronal stress in large DRG neurons relatively early in diabetic sensory neuropathy.


Assuntos
Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Gânglios Espinais/patologia , Masculino , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Fatores de Tempo
14.
J Pharmacol Exp Ther ; 323(2): 508-15, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17702901

RESUMO

A clearer understanding of the mechanisms underlying the development and progression of diabetic neuropathy is likely to indicate new directions for the treatment of this complication of diabetes. In the present study we investigated the expression of cannabinoid CB(1) receptors in models of diabetic neuropathy. PC12 cells were differentiated into a neuronal phenotype with nerve growth factor (NGF) (50 ng/ml) in varying concentrations of glucose (5.5-50 mM). CB(1) receptor expression was studied at the mRNA level by reverse transcriptase-polymerase chain reaction (RT-PCR) and at the protein level via immunohistochemical and Western blot analysis. CB(1) expression was also compared in dorsal root ganglia (DRG) removed from streptozotocin-induced diabetic rats versus control animals. Total neurite length induced by NGF was reduced in cells cultured in 20 to 50 mM glucose at day 6 (P < 0.01 versus 5.5 mM; n = 6). Cell viability assays conducted in parallel on day 6 confirmed that the total cell numbers were not significantly different among the various glucose concentrations (P = 0.86; n = 12). RT-PCR, immunohistochemical, and Western blot analysis all revealed down-regulation of the CB(1) receptor in cells treated with high glucose (P < 0.05; n = 4-5 for each), and in DRG removed from diabetic rats compared with controls (P < 0.01; n = 5 for immunohistochemistry, and n = 3 for Western blot). These results suggest that high glucose concentrations are associated with decreased expression of CB(1) receptors in nerve cells. Given the neuroprotective effect of cannabinoids, a decline in CB(1) receptor expression may contribute to the neurodegenerative process observed in diabetes.


Assuntos
Neuropatias Diabéticas/metabolismo , Receptor CB1 de Canabinoide/análise , Animais , Neuropatias Diabéticas/etiologia , Masculino , Neuritos/fisiologia , Células PC12 , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Canais de Cátion TRPV/fisiologia
15.
J Neurosci ; 26(30): 7984-94, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16870743

RESUMO

Voltage-gated sodium channel (Na(v)1) beta2 subunits modulate channel gating, assembly, and cell-surface expression in CNS neurons in vitro and in vivo. beta2 expression increases in sensory neurons after nerve injury, and development of mechanical allodynia in the spared nerve injury model is attenuated in beta2-null mice. Thus, we hypothesized that beta2 modulates electrical excitability in dorsal root ganglion (DRG) neurons in vivo. We compared sodium currents (I(Na)) in small DRG neurons from beta2+/+ and beta2-/- mice to determine the effects of beta2 on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(v)1 in vivo. Small-fast DRG neurons acutely isolated from beta2-/- mice showed significant decreases in TTX-S I(Na) compared with beta2+/+ neurons. This decrease included a 51% reduction in maximal sodium conductance with no detectable changes in the voltage dependence of activation or inactivation. TTX-S, but not TTX-R, I(Na) activation and inactivation kinetics in these cells were slower in beta2(-/-) mice compared with controls. The selective regulation of TTX-S I(Na) was supported by reductions in transcript and protein levels of TTX-S Na(v)1s, particularly Na(v)1.7. Low-threshold mechanical sensitivity was preserved in beta2-/- mice, but they were more sensitive to noxious thermal stimuli than wild type whereas their response during the late phase of the formalin test was attenuated. Our results suggest that beta2 modulates TTX-S Na(v)1 mRNA and protein expression resulting in increased TTX-S I(Na) and increases the rates of TTX-S Na(v)1 activation and inactivation in small-fast DRG neurons in vivo. TTX-R I(Na) were not significantly modulated by beta2.


Assuntos
Gânglios Espinais/fisiologia , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Limiar da Dor/fisiologia , Canais de Sódio/metabolismo , Tetrodotoxina/administração & dosagem , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Subunidade beta-2 do Canal de Sódio Disparado por Voltagem
16.
Biochem Biophys Res Commun ; 339(2): 652-60, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16310161

RESUMO

Differential alterations of sodium channels in small nociceptive C-fiber DRG neurons have been implicated in diabetic neuropathy. In this study, we investigated sodium currents and the expression of sodium channels in large A-fiber DRG neurons in diabetic rats. Compared with controls, large neurons from diabetic rats showed significant increases in both total and TTX-S sodium currents and approximately -15mV shifts in their voltage-dependent activation kinetics. TTX-R Na(v)1.9 sodium current was also significantly increased, whereas no alteration of TTX-R Na(v)1.8 current was observed in neurons from diabetic rats. Sodium current induced by fast- or slow-voltage ramps increased markedly in the diabetic neurons as well. Immunofluorescence studies showed significant increases in the levels and number of large DRG neurons from diabetic rats expressing Na(v)1.2, Na(v)1.3, Na(v)1.7, and Na(v)1.9 whereas Na(v)1.8 decreased. We also observed a decrease in the number of nodes of Ranvier expressing Na(v)1.8 and in staining intensity of Na(v)1.6 and Na(v)1.8 at nodes. Our results suggest that alterations of sodium channels occur in large DRG neurons and A-fibers, and may play an important role in diabetic sensory neuropathy.


Assuntos
Neuropatias Diabéticas/metabolismo , Gânglios Espinais/citologia , Fibras Nervosas Mielinizadas/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Animais , Células Cultivadas , Eletrofisiologia , Cinética , Masculino , Modelos Biológicos , Fibras Nervosas Amielínicas/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo , Fatores de Tempo
17.
J Biol Chem ; 280(1): 618-27, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15513920

RESUMO

Diabetes mellitus is associated with one or more kinds of stimulus-evoked pain including hyperalgesia and allodynia. The mechanisms underlying painful diabetic neuropathy remain poorly understood. Previous studies demonstrate an important role of vanilloid receptor 1 (VR1) in inflammation and injury-induced pain. Here we investigated the function and expression of VR1 in dorsal root ganglion (DRG) neurons isolated from streptozotocin-induced diabetic rats between 4 and 8 weeks after onset of diabetes. DRG neurons from diabetic rats showed significant increases in capsaicin- and proton-activated inward currents. These evoked currents were completely blocked by the capsaicin antagonist capsazepine. Capsaicin-induced desensitization of VR1 was down-regulated, whereas VR1 re-sensitization was up-regulated in DRG neurons from diabetic rats. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate blunted VR1 desensitization, and this effect was reversible in the presence of the PKC inhibitor bisindolylmaleimide I. Compared with the controls, VR1 protein was decreased in DRG whole-cell homogenates from diabetic rats, but increased levels of VR1 protein were observed on plasma membranes. Of interest, the tetrameric form of VR1 increased significantly in DRGs from diabetic rats. Increased phosphorylation levels of VR1 were also observed in DRG neurons from diabetic rats. Colocalization studies demonstrated that VR1 expression was increased in large myelinated A-fiber DRG neurons, whereas it was decreased in small unmyelinated C-fiber neurons as a result of diabetes. These results suggest that painful diabetic neuropathy is associated with altered cell-specific expression of the VR1 receptor that is coupled to increased function through PKC-mediated phosphorylation, oligomerization, and targeted expression on the cell surface membrane.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Canais Iônicos/metabolismo , Animais , Membrana Celular/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/etiologia , Dimerização , Regulação para Baixo , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Masculino , Especificidade de Órgãos , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV , Regulação para Cima
18.
Autophagy ; 1(3): 163-70, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16874076

RESUMO

The etiology of diabetic neuropathy is multifactorial and not fully elucidated, although oxidative stress and mitochondrial dysfunction are major factors. We reported previously that complement-inactivated sera from type 2 diabetic patients with neuropathy induce apoptosis in cultured neuronal cells, possibly through an autoimmune immunoglobulin-mediated pathway. Recent evidence supports an emerging role for autophagy in a variety of diseases. Here we report that exposure of human neuroblastoma SH-SY5Y cells to sera from type 2 diabetic patients with neuropathy is associated with increased levels of autophagosomes that is likely mediated by increased titers of IgM or IgG autoimmune immunoglobulins. The increased presence of macroautophagic vesicles was monitored using a specific immunohistochemical marker for autophagosomes, anti-LC3-II immunoreactivity, as well as the immunohistochemical signal for beclin-1, and was associated with increased co-localization with mitochondria in the cells exposed to diabetic neuropathic sera. We also report that dorsal root ganglia removed from streptozotocin-induced diabetic rats exhibit increased levels of autophagosomes and co-localization with mitochondria in neuronal soma, concurrent with enhanced binding of IgG and IgM autoimmune immunoglobulins. To our knowledge, this is the first evidence that the presence of autophagosomes is increased by a serum factor, likely autoantibody(ies) in a pathological condition. Stimulation of autophagy by an autoantibody-mediated pathway can provide a critical link between the immune system and the loss of function and eventual demise of neuronal tissue in type 2 diabetes.


Assuntos
Autofagia , Diabetes Mellitus Tipo 2/imunologia , Neuropatias Diabéticas/imunologia , Soros Imunes/imunologia , Mitocôndrias/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autoimunidade , Proteína Beclina-1 , Linhagem Celular Tumoral , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Neuropatias Diabéticas/sangue , Feminino , Gânglios Espinais/patologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley
19.
J Biol Chem ; 279(28): 29341-50, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15123645

RESUMO

Diabetic neuropathy is a common form of peripheral neuropathy, yet the mechanisms responsible for pain in this disease are poorly understood. Alterations in the expression and function of voltage-gated tetrodotoxin-resistant (TTX-R) sodium channels have been implicated in animal models of neuropathic pain, including models of diabetic neuropathy. We investigated the expression and function of TTX-sensitive (TTX-S) and TTX-R sodium channels in dorsal root ganglion (DRG) neurons and the responses to thermal hyperalgesia and mechanical allodynia in streptozotocin-treated rats between 4-8 weeks after onset of diabetes. Diabetic rats demonstrated a significant reduction in the threshold for escape from innocuous mechanical pressure (allodynia) and a reduction in the latency to withdrawal from a noxious thermal stimulus (hyperalgesia). Both TTX-S and TTX-R sodium currents increased significantly in small DRG neurons isolated from diabetic rats. The voltage-dependent activation and steady-state inactivation curves for these currents were shifted negatively. TTX-S currents induced by fast or slow voltage ramps increased markedly in neurons from diabetic rats. Immunoblots and immunofluorescence staining demonstrated significant increases in the expression of Na(v)1.3 (TTX-S) and Na(v) 1.7 (TTX-S) and decreases in the expression of Na(v) 1.6 (TTX-S) and Na(v)1.8 (TTX-R) in diabetic rats. The level of serine/threonine phosphorylation of Na(v) 1.6 and In Na(v)1.8 increased in response to diabetes. addition, increased tyrosine phosphorylation of Na(v)1.6 and Na(v)1.7 was observed in DRGs from diabetic rats. These results suggest that both TTX-S and TTX-R sodium channels play important roles and that differential phosphorylation of sodium channels involving both serine/threonine and tyrosine sites contributes to painful diabetic neuropathy.


Assuntos
Anestésicos Locais/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios Espinais/citologia , Neurônios/metabolismo , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/metabolismo , Tetrodotoxina/metabolismo , Animais , Diabetes Mellitus Experimental , Humanos , Hiperalgesia/fisiopatologia , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Técnicas de Patch-Clamp , Periferinas , Fosforilação , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA