Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334519

RESUMO

Two-dimensional (2D) vertical van der Waals heterostructures (vdWHs) show great potential across various applications. However, synthesizing large-scale structures poses challenges owing to the intricate growth parameters, forming unexpected hybrid film structures. Thus, precision in synthesis and thorough structural analysis are essential aspects. In this study, we successfully synthesized large-scale structured 2D transition metal dichalcogenides (TMDs) via chemical vapor deposition using metal oxide (WO3 and MoO3) thin films and a diluted H2S precursor, individual MoS2, WS2 films and various MoS2/WS2 hybrid films (Type I: MoxW1-xS2 alloy; Type II: MoS2/WS2 vdWH; Type III: MoS2 dots/WS2). Structural analyses, including optical microscopy, Raman spectroscopy, transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy, and cross-sectional imaging revealed that the A1g and E2g modes of WS2 and MoS2 were sensitive to structural variations, enabling hybrid structure differentiation. Type II showed minimal changes in the MoS2's A1g mode, while Types I and III exhibited a ~2.8 cm-1 blue shift. Furthermore, the A1g mode of WS2 in Type I displayed a 1.4 cm-1 red shift. These variations agreed with the TEM-observed microstructural features, demonstrating strain effects on the MoS2-WS2 interfaces. Our study provides insights into the structural features of diverse hybrid TMD materials, facilitating their differentiation through Raman spectroscopy.

2.
ACS Omega ; 8(44): 41548-41557, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37969985

RESUMO

We report on the covalent binding of acetonitrile (CH3CN) on Si{111}-(7 × 7) at ∼300 K studied by scanning tunneling microscopy, thermal desorption spectroscopy, and first-principles theoretical calculations. The site-specific study makes it possible to unravel the site-by-site and step-by-step kinetics. A polarized CH3CN prefers to adsorb on the faulted half more frequently compared to on the unfaulted half. Moreover, a molecular CH3CN adsorbs four-times more preferably on the center adatom-rest atom (CEA-REA) pair than on the corner adatom-rest atom (COA-REA) pair. Such site selectivity, the number ratio of reacted-CEA/reacted-COA, depends on the number of reacted adatoms in the half-unit cell. The site selectivity and the resulting reacted-adatom patterns are understood well by considering a simple model. In this simple model, the molecular adsorption probability changes step-by-step and site-by-site with increasing reacted adatoms. Furthermore, our theoretical calculations are overall consistent with the experimental results. The site-selectivity of the adsorption of CH3CN on Si{111}-(7 × 7) is explained well by the chemical reactivity depending on the local conformation, the local density of states, and the interaction between polarized adsorbates.

3.
ACS Nano ; 17(21): 21678-21689, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37843425

RESUMO

In this study, we investigate the thermochemical stability of graphene on the GaN substrate for metal-organic chemical vapor deposition (MOCVD)-based remote epitaxy. Despite excellent physical properties of GaN, making it a compelling choice for high-performance electronic and light-emitting device applications, the challenge of thermochemical decomposition of graphene on a GaN substrate at high temperatures has obstructed the achievement of remote homoepitaxy via MOCVD. Our research uncovers an unexpected stability of graphene on N-polar GaN, thereby enabling the MOCVD-based remote homoepitaxy of N-polar GaN. Our comparative analysis of N- and Ga-polar GaN substrates reveals markedly different outcomes: while a graphene/N-polar GaN substrate produces releasable microcrystals (µCs), a graphene/Ga-polar GaN substrate yields nonreleasable thin films. We attribute this discrepancy to the polarity-dependent thermochemical stability of graphene on the GaN substrate and its subsequent reaction with hydrogen. Evidence obtained from Raman spectroscopy, electron microscopic analyses, and overlayer delamination points to a pronounced thermochemical stability of graphene on N-polar GaN during MOCVD-based remote homoepitaxy. Molecular dynamics simulations, corroborated by experimental data, further substantiate that the thermochemical stability of graphene is reliant on the polarity of GaN, due to different reactions with hydrogen at high temperatures. Based on the N-polar remote homoepitaxy of µCs, the practical application of our findings was demonstrated in fabrication of flexible light-emitting diodes composed of p-n junction µCs with InGaN heterostructures.

4.
Nano Lett ; 23(8): 3144-3151, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026614

RESUMO

Group IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of γ-GeSe, a recently identified polymorph of GeSe. γ-GeSe exhibits high electrical conductivity (∼106 S/m) and a relatively low Seebeck coefficient (9.4 µV/K at room temperature) owing to its high p-doping level (5 × 1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that γ-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties.

5.
Nat Nanotechnol ; 18(5): 464-470, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941360

RESUMO

Layer transfer techniques have been extensively explored for semiconductor device fabrication as a path to reduce costs and to form heterogeneously integrated devices. These techniques entail isolating epitaxial layers from an expensive donor wafer to form freestanding membranes. However, current layer transfer processes are still low-throughput and too expensive to be commercially suitable. Here we report a high-throughput layer transfer technique that can produce multiple compound semiconductor membranes from a single wafer. We directly grow two-dimensional (2D) materials on III-N and III-V substrates using epitaxy tools, which enables a scheme comprised of multiple alternating layers of 2D materials and epilayers that can be formed by a single growth run. Each epilayer in the multistack structure is then harvested by layer-by-layer mechanical exfoliation, producing multiple freestanding membranes from a single wafer without involving time-consuming processes such as sacrificial layer etching or wafer polishing. Moreover, atomic-precision exfoliation at the 2D interface allows for the recycling of the wafers for subsequent membrane production, with the potential for greatly reducing the manufacturing cost.

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34835724

RESUMO

Using density functional theory calculations, atomic and electronic structure of defects in monolayer GeS were investigated by focusing on the effects of vacancies and substitutional atoms. We chose group IV or chalcogen elements as substitutional ones, which substitute for Ge or S in GeS. It was found that the bandgap of GeS with substitutional atoms is close to that of pristine GeS, while the bandgap of GeS with Ge or S vacancies was smaller than that of pristine GeS. In terms of formation energy, monolayer GeS with Ge vacancies is more stable than that with S vacancies, and notably GeS with Ge substituted with Sn is most favorable within the range of chemical potential considered. Defects affect the piezoelectric properties depending on vacancies or substitutional atoms. Especially, GeS with substitutional atoms has almost the same piezoelectric stress coefficients eij as pristine GeS while having lower piezoelectric strain coefficients dij  but still much higher than other 2D materials. It is therefore concluded that Sn can effectively heal Ge vacancy in GeS, keeping high piezoelectric strain coefficients.

7.
Sci Rep ; 11(1): 17790, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493752

RESUMO

The electrical phase transition in van der Waals (vdW) layered materials such as transition-metal dichalcogenides and Bi2Sr2CaCu2O8+x (Bi-2212) high-temperature superconductor has been explored using various techniques, including scanning tunneling and photoemission spectroscopies, and measurements of electrical resistance as a function of temperature. In this study, we develop one useful method to elucidate the electrical phases in vdW layered materials: indium (In)-contacted vdW tunneling spectroscopy for 1T-TaS2, Bi-2212 and 2H-MoS2. We utilized the vdW gap formed at an In/vdW material interface as a tunnel barrier for tunneling spectroscopy. For strongly correlated electron systems such as 1T-TaS2 and Bi-2212, pronounced gap features corresponding to the Mott and superconducting gaps were respectively observed at T = 4 K. We observed a gate dependence of the amplitude of the superconducting gap, which has potential applications in a gate-tunable superconducting device with a SiO2/Si substrate. For In/10 nm-thick 2H-MoS2 devices, differential conductance shoulders at bias voltages of approximately ± 0.45 V were observed, which were attributed to the semiconducting gap. These results show that In-contacted vdW gap tunneling spectroscopy in a fashion of field-effect transistor provides feasible and reliable ways to investigate electronic structures of vdW materials.

8.
ACS Omega ; 5(38): 24179-24185, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015433

RESUMO

The adsorption of acetonitrile (CH3CN) on Si(111)-(7 × 7) at a room temperature has been investigated using scanning tunneling microscopy (STM) and first-principles calculations. The site-specific information on adsorption enables us to understand the site-by-site and step-by-step adsorption mechanism. From theoretical simulations, the most stable configuration of CH3CN on Si(111)-(7 × 7) is found to be a molecularly chemisorbed CH3CN with the carbon and nitrogen atoms of CN bonded to the rest atom and adatom on the Si surface, respectively. Some chemisorption-induced features in the STM topographic image are assigned based on the theoretical calculations.

9.
Sci Adv ; 6(23): eaaz5180, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537496

RESUMO

There have been rapidly increasing demands for flexible lighting apparatus, and micrometer-scale light-emitting diodes (LEDs) are regarded as one of the promising lighting sources for deformable device applications. Herein, we demonstrate a method of creating a deformable LED, based on remote heteroepitaxy of GaN microrod (MR) p-n junction arrays on c-Al2O3 wafer across graphene. The use of graphene allows the transfer of MR LED arrays onto a copper plate, and spatially separate MR arrays offer ideal device geometry suitable for deformable LED in various shapes without serious device performance degradation. Moreover, remote heteroepitaxy also allows the wafer to be reused, allowing reproducible production of MR LEDs using a single substrate without noticeable device degradation. The remote heteroepitaxial relation is determined by high-resolution scanning transmission electron microscopy, and the density functional theory simulations clarify how the remote heteroepitaxy is made possible through graphene.

10.
Sci Adv ; 6(10): eaay4958, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32181347

RESUMO

Hexagonal boron nitride (hBN) is an insulating two-dimensional (2D) material with a large bandgap. Although known for its interfacing with other 2D materials and structural similarities to graphene, the potential use of hBN in 2D electronics is limited by its insulating nature. Here, we report atomically sharp twin boundaries at AA'/AB stacking boundaries in chemical vapor deposition-synthesized few-layer hBN. We find that the twin boundary is composed of a 6'6' configuration, showing conducting feature with a zero bandgap. Furthermore, the formation mechanism of the atomically sharp twin boundaries is suggested by an analogy with stacking combinations of AA'/AB based on the observations of extended Klein edges at the layer boundaries of AB-stacked hBN. The atomically sharp AA'/AB stacking boundary is promising as an ultimate 1D electron channel embedded in insulating pristine hBN. This study will provide insights into the fabrication of single-hBN electronic devices.

11.
Nano Lett ; 20(4): 2443-2451, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32191480

RESUMO

In optoelectronic devices based on two-dimensional (2D) semiconductor heterojunctions, the efficient charge transport of photogenerated carriers across the interface is a critical factor to determine the device performances. Here, we report an unexplored approach to boost the optoelectronic device performances of the WSe2-MoS2 p-n heterojunctions via the monolithic-oxidation-induced doping and resultant modulation of the interface band alignment. In the proposed device, the atomically thin WOx layer, which is directly formed by layer-by-layer oxidation of WSe2, is used as a charge transport layer for promoting hole extraction. The use of the ultrathin oxide layer significantly enhanced the photoresponsivity of the WSe2-MoS2 p-n junction devices, and the power conversion efficiency increased from 0.7 to 5.0%, maintaining the response time. The enhanced characteristics can be understood by the formation of the low Schottky barrier and favorable interface band alignment, as confirmed by band alignment analyses and first-principle calculations. Our work suggests a new route to achieve interface contact engineering in the heterostructures toward realizing high-performance 2D optoelectronics.

12.
Adv Mater ; 31(39): e1903424, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31389640

RESUMO

A new compound material of 2D hydrofluorinated graphene (HFG) is demonstrated whose relative hydrogen/fluorine concentrations can be tailored between the extremes of either hydrogenated graphene (HG) and fluorinated graphene (FG). The material is fabricated through subsequent exposures to indirect hydrogen plasma and xenon difluoride (XeF2 ). Controlling the relative concentration in the HFG compound enables tailoring of material properties between the extremes offered by the constituent materials and in-plane patterning produces micrometer-scale regions with different surface properties. The utility of the technique to tailor the surface wettability, surface friction, and electrical conductivity is demonstrated. HFG compounds display wettability between the extremes of pure FG with contact angle of 95° ± 5° and pure HG with contact angle of 42° ± 2°. Similarly, the HFG surface friction may be tailored between the two extremes. Finally, the HFG electrical conductivity tunes through five orders of magnitude when transitioning from FG to HG. When combined with simulation, the electrical measurements reveal the mechanism producing the compound to be a dynamic process of adatom desorption and replacement. This study opens a new class of 2D compound materials and innovative chemical patterning with applications for atomically thin 2D circuits consisting of chemically/electrically modulated regions.

13.
Nanotechnology ; 30(40): 404002, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31234153

RESUMO

We have performed density functional theory calculations to study the effects caused by the interfacial structure between 2D-MoS2 and 3D-GaN. Two different surface terminations of GaN are considered: Ga-terminated (0001) (Ga-GaN) and N-terminated ([Formula: see text]) (N-GaN) configurations. We confirm that Rashba spin splitting occurs in band structure of MoS2 on GaN. We also find that the surface states of GaN move to the deep position in band structure in the MoS2/Ga-GaN case, while the surface states of GaN are hybridized with MoS2 near the Fermi level for the MoS2/N-GaN case. Furthermore, we investigate the variation in electronic structure of MoS2/GaN heterostructures depending on the number of MoS2 layers. Especially, the top layer MoS2 of the 2L-MoS2/GaN structures shows both n-type and p-type properties depending on the GaN surface termination. As a result, we suggest that the electrical characteristics of the 2D/3D heterostructures could be controlled by the surface terminations of substrate materials.

14.
Sci Rep ; 9(1): 5811, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967593

RESUMO

The valid strong THz absorption at 1.58 THz was probed in the organic-inorganic hybrid perovskite thin film, CH3NH3PbI3, fabricated by sequential vacuum evaporation method. In usual solution-based methods such as 2-step solution and antisolvent, we observed the relatively weak two main absorption peaks at 0.95 and 1.87 THz. The measured absorption spectrum is analyzed by density-functional theory calculations. The modes at 0.95 and 1.87 THz are assigned to the Pb-I vibrations of the inorganic components in the tetragonal phase. By contrast, the origin of the 1.58 THz absorption is due to the structural deformation of Pb-I bonding at the grain boundary incorporated with a CH3NH2 molecular defect.

15.
Sci Rep ; 9(1): 3623, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842541

RESUMO

Using first-principles calculations, we investigate an atomic impurity at the interface of a van der Waals heterostructure (vdW heterostructure) consisting of a zigzag graphene nanoribbon (ZGNR) and a hexagonal boron nitride (h-BN) sheet. To find effects of atomic intercalation on geometrical and electronic properties of the ZGNR on the h-BN sheet, various types of impurity atoms are considered. The embedded atoms are initially placed at the edge or the middle of the ZGNR located on the h-BN sheet. Our results demonstrate that most of the impurity atoms are more stable at the edge than at the middle in all cases we consider. Especially, a nickel atom has the smallest energy difference (~0.15 eV) between the two embedding positions, which means that the Ni atom is relatively easy to intercalate in the structure. Finally, we discuss magnetic properties for the vdW heterostructure with an intercalated atom.

16.
ACS Appl Mater Interfaces ; 11(11): 10959-10966, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807091

RESUMO

There have been a few studies of heterojunctions composed of two-dimensional transition-metal dichalcogenides (TMDs) and an oxide layer, but such studies of high-performance electric and optoelectronic devices are essential. Such heterojunctions with low-resistivity metal contacts are needed by the electronics industry to fabricate efficient diodes and photovoltaic devices. Here, a van der Waals heterojunction composed of p-type black phosphorus (p-BP) and n-type indium-gallium-zinc oxide (n-IGZO) films with low-resistivity metal contacts is reported, and it demonstrates high rectification. The low off-state leakage current in the thick IGZO film accounts for the high rectification ratio in a sharp interface of p-BP/n-IGZO devices. For electrostatic gate control, an ionic liquid is introduced to achieve a high rectification ratio of 9.1 × 104. The photovoltaic measurements of p-BP/n-IGZO show fast rise and decay times, significant open-circuit voltage and short-circuit current, and a high photoresponsivity of 418 mA/W with a substantial external quantum efficiency of 12.1%. The electric and optoelectronic characteristics of TMDs/oxide layer van der Waals heterojunctions are attractive for industrial applications in the near future.

17.
Nanoscale ; 10(48): 22970-22980, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30500036

RESUMO

Two-dimensional atomic layered materials (2d-ALMs) are emerging candidates for use as epitaxial seed substrates for transferrable epilayers. However, the micrometer-sized domains of 2d-ALMs preclude their practical use in epitaxy because they cause crystallographically in-plane disordering of the overlayer. Ultrathin graphene can penetrate the electric dipole momentum from an underlying crystal layer to the graphene surface, which then drives it to crystallize the overlayer during the initial growth stage, thus resulting in substantial energy saving. This study demonstrates the remote homoepitaxy of ZnO microrods (MRs) on ZnO substrates across graphene layers via a hydrothermal method. Despite the presence of poly-domain graphene in between the ZnO substrate and ZnO MRs, the MRs were epitaxially grown on a- and c-plane ZnO substrates, whose in-plane alignments were homogeneous within the wafer's size. Transmission electron microscopy revealed a homoepitaxial relationship between the overlayer MRs and the substrate. Density-functional theory calculations suggested that the charge redistribution occurring near graphene induces the electric dipole formation, so the attracted adatoms led to the formation of the remote homoepitaxial overlayer. Due to a strong potential field caused by long-range charge transfer given from the substrate, even the use of bi-layer and tri-layer graphene resulted in remote homoepitaxial ZnO MRs. The effects of substrate crystal planes were also theoretically and empirically investigated. The ability of graphene, which can be released from the mother substrate without covalent bonds, was utilized to transfer the overlayer MR arrays. This method opens a way for producing well aligned, transferrable epitaxial nano/microstructure arrays while regenerating the substrate for cost-saving device manufacturing.

18.
Phys Chem Chem Phys ; 20(39): 25240-25245, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30270382

RESUMO

For utilization of two-dimensional (2D) materials as electronic devices, their mixed-dimensional heterostructures with three-dimensional (3D) materials are receiving much attention. In this study, we have investigated the atomic and electronic structures of the 2D/3D heterojunction between MoS2 and Si(100) using density functional theory calculations; especially, we focus on the contact behavior dependence on the interfacial structures of heterojunctions by considering two types of surface termination of Si(100) surfaces. Calculations show that MoS2 and clean Si(100) form an almost n-type ohmic contact with a very small Schottky barrier height (SBH) due to strong covalent bonds between them, and that the contact between MoS2 and H-covered Si(100) makes a p-n heterojunction with weak van der Waals interactions. Such a difference in contact behaviors can be explained by different electric dipole formation at the heterojunction interfaces. Overall, it is concluded that contact properties can be varied depending on the interfacial structures of 2D(MoS2)/3D(Si) semiconductor heterojunctions.

19.
Sci Rep ; 8(1): 12966, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154432

RESUMO

Black Phosphorus (BP) is an excellent material from the post graphene era due to its layer dependent band gap, high mobility and high Ion/Ioff. However, its poor stability in ambient poses a great challenge for its practical and long-term usage. The optical visualization of the oxidized BP is the key and the foremost step for its successful passivation from the ambience. Here, we have conducted a systematic study of the oxidation of the BP and developed a technique to optically identify the oxidation of the BP using Liquid Crystal (LC). It is interesting to note that we found that the rapid oxidation of the thin layers of the BP makes them disappear and can be envisaged by using the alignment of the LC. The molecular dynamics simulations also proved the preferential alignment of the LC on the oxidized BP. We believe that this simple technique will be effective in passivation efforts of the BP, and will enable it for exploitation of its properties in the field of electronics.

20.
Sci Rep ; 8(1): 10081, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973666

RESUMO

Graphene oxide (GO) modulates the functions of antigen-presenting cells including dendritic cells (DCs). Although carbon nanotubes affect expression of the MHC class I-like CD1d molecule, whether GO can influence immune responses of CD1d-dependent invariant natural killer T (iNKT) cells remains unclear. Here, we investigated the impact of GO on inflammatory responses mediated by α-galactosylceramide (α-GalCer), an iNKT cell agonist. We found that in vivo GO treatment substantially inhibited the capacity of α-GalCer to induce the iNKT cell-mediated trans-activation of and cytokine production by innate and innate-like cells, including DCs, macrophages, NK cells, and γδ T cells. Such effects of GO on α-GalCer-induced inflammatory responses closely correlated with iNKT cell polarization towards TGFß production, which also explains the capacity of GO to expand regulatory T cells. Interestingly, the absence of TLR4, a receptor for GO, failed to downregulate, and instead partially enhanced the anti-inflammatory activity of GO against α-GalCer-elicited responses, implying negative effects of TLR4 signaling on the anti-inflammatory properties of GO. By employing an α-GalCer-induced sepsis model, we further demonstrated that GO treatment significantly protected mice from α-GalCer-induced lethality. Taken together, we provide strong evidence that GO holds promise as an adjuvant to modulate iNKT cell responses for immunotherapy.


Assuntos
Grafite/administração & dosagem , Inflamação/tratamento farmacológico , Sepse/tratamento farmacológico , Receptor 4 Toll-Like/genética , Fator de Crescimento Transformador beta/genética , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Polaridade Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Galactosilceramidas/administração & dosagem , Humanos , Inflamação/imunologia , Inflamação/patologia , Linfócitos Intraepiteliais/efeitos dos fármacos , Linfócitos Intraepiteliais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Nanotubos de Carbono/química , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Sepse/imunologia , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA