Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392011

RESUMO

Pulse Wave Velocity (PWV) analysis is valuable for assessing arterial stiffness and cardiovascular health and potentially for estimating blood pressure cufflessly. However, conventional PWV analysis from two transducers spaced closely poses challenges in data management, battery life, and developing the device for continuous real-time applications together along an artery, which typically need data to be recorded at high sampling rates. Specifically, although a pulse signal consists of low-frequency components when used for applications such as determining heart rate, the pulse transit time for transducers near each other along an artery takes place in the millisecond range, typically needing a high sampling rate. To overcome this issue, in this study, we present a novel approach that leverages the Nyquist-Shannon sampling theorem and reconstruction techniques for signals produced by bioimpedance transducers closely spaced along a radial artery. Specifically, we recorded bioimpedance artery pulse signals at a low sampling rate, reducing the data size and subsequently algorithmically reconstructing these signals at a higher sampling rate. We were able to retain vital transit time information and achieved enhanced precision that is comparable to the traditional high-rate sampling method. Our research demonstrates the viability of the algorithmic method for enabling PWV analysis from low-sampling-rate data, overcoming the constraints of conventional approaches. This technique has the potential to contribute to the development of cardiovascular health monitoring and diagnosis using closely spaced wearable devices for real-time and low-resource PWV assessment, enhancing patient care and cardiovascular disease management.


Assuntos
Artérias , Análise de Onda de Pulso , Humanos , Artérias/fisiologia , Pressão Sanguínea , Frequência Cardíaca
2.
Bio Protoc ; 12(5): e4341, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35592610

RESUMO

Optogenetics has the potential to transform the study of the peripheral nervous system (PNS), but the complex anatomy of the PNS poses unique challenges for the focused delivery of light to specific tissues. This protocol describes the fabrication of a wireless telemetry system for studying peripheral sensory pathways. Unlike existing wireless approaches, the low-power wireless telemetry offers organ specificity via a sandwiched pre-curved tether, and enables high-throughput analysis of behavioral experiments with a channel isolation strategy. We describe the technical procedures for the construction of these devices, the wireless power transmission (TX) system with antenna coils, and their implementation for in vivo experimental applications. In total, the timeline of the procedure, including device fabrication, implantation, and preparation to begin in vivo experimentation can be completed in ~2-4 weeks. Implementation of these devices allows for chronic (>1 month) wireless optogenetic manipulation of peripheral neural pathways in freely behaving animals navigating homecage environments (up to 8).

3.
Nat Commun ; 13(1): 2178, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449140

RESUMO

Photodynamic therapy (PDT) offers several advantages for treating cancers, but its efficacy is highly dependent on light delivery to activate a photosensitizer. Advances in wireless technologies enable remote delivery of light to tumors, but suffer from key limitations, including low levels of tissue penetration and photosensitizer activation. Here, we introduce DeepLabCut (DLC)-informed low-power wireless telemetry with an integrated thermal/light simulation platform that overcomes the above constraints. The simulator produces an optimized combination of wavelengths and light sources, and DLC-assisted wireless telemetry uses the parameters from the simulator to enable adequate illumination of tumors through high-throughput (<20 mice) and multi-wavelength operation. Together, they establish a range of guidelines for effective PDT regimen design. In vivo Hypericin and Foscan mediated PDT, using cancer xenograft models, demonstrates substantial suppression of tumor growth, warranting further investigation in research and/or clinical settings.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Inteligência Artificial , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Telemetria
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5742-5746, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892424

RESUMO

Optogenetics has the potential to transform the study of organ functions in the peripheral nervous system via relatively easy access to the nerves and a direct link between the brain and organ systems. Implementation typically requires a static skeletal feature for the securement of a fiber. Unfortunately, the soft nature of peripheral nervous systems makes the wired fiber-optic approach less ideal for the study of the peripheral nervous system. Existing wireless approaches could bypass some constraints associated with optical fibers and thereby offer organ specificity. However, they suffer from durability loss due to considerable biological strains and unable to perform longitudinal experiments. Here, we propose a new class of wireless gastric optogenetic implant for identifying signaling pathways, in particular viscerosensory pathways, that can regulate food intake to treat obesity. Robust, wireless gastric optogenetic implants with a tubing-assisted U-shaped tether directly interface with nerve endings in the stomach with chronic stability in operation (> 100 kilocycles) and allows for optogenetic stimulations of vagus nerves in a freely behaving animal. We demonstrated utilities of the proposed wireless device in in vivo experiments. Results suggest the potential for identifying interventions for the treatment of obesity.Clinical Relevance - Identification of the roles of subpopulations in viscerosensory pathways would provide the platform for the development of better therapeutics for the treatment of obesity.


Assuntos
Optogenética , Tecnologia sem Fio , Animais , Obesidade , Próteses e Implantes , Estômago/cirurgia
5.
Sensors (Basel) ; 21(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802445

RESUMO

Hydrocephalus is a medical condition characterized by the abnormal accumulation of cerebrospinal fluid (CSF) within the cavities of the brain called ventricles. It frequently follows pediatric and adult congenital malformations, stroke, meningitis, aneurysmal rupture, brain tumors, and traumatic brain injury. CSF diversion devices, or shunts, have become the primary therapy for hydrocephalus treatment for nearly 60 years. However, routine treatment complications associated with a shunt device are infection, obstruction, and over drainage. Although some (regrettably, the minority) patients with shunts can go for years without complications, even those lucky few may potentially experience one shunt malfunction; a shunt complication can require emergency intervention. Here, we present a soft, wireless device that monitors distal terminal fluid flow and transmits measurements to a smartphone via a low-power Bluetooth communication when requested. The proposed multimodal sensing device enabled by flow sensors, for measurements of flow rate and electrodes for measurements of resistance in a fluidic chamber, allows precision measurement of CSF flow rate over a long time and under any circumstances caused by unexpected or abnormal events. A universal design compatible with any modern commercial spinal fluid shunt system would enable the widespread use of this technology.


Assuntos
Derivações do Líquido Cefalorraquidiano , Hidrocefalia , Adulto , Derivações do Líquido Cefalorraquidiano/efeitos adversos , Criança , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/cirurgia , Próteses e Implantes
6.
Nat Commun ; 12(1): 157, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420038

RESUMO

The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.


Assuntos
Apetite/fisiologia , Ensaios de Triagem em Larga Escala/instrumentação , Optogenética/instrumentação , Estômago/fisiologia , Nervo Vago/fisiologia , Animais , Técnicas de Observação do Comportamento/instrumentação , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Quimiorreceptoras/fisiologia , Desenho de Equipamento , Feminino , Masculino , Camundongos Transgênicos , Modelos Animais , Vias Neurais/fisiologia , Tecnologia de Sensoriamento Remoto/instrumentação , Estômago/citologia , Estômago/inervação , Nervo Vago/citologia , Tecnologia sem Fio/instrumentação
7.
Sensors (Basel) ; 20(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610454

RESUMO

Wireless optoelectronic devices can deliver light to targeted regions in the brain and modulate discrete circuits in an animal that is awake. Here, we propose a miniaturized fully implantable low-power optoelectronic device that allows for advanced operational modes and the stimulation/inhibition of deep brain circuits in a freely-behaving animal. The combination of low power control logic circuits, including a reed switch and dual-coil wireless power transfer platform, provides powerful capabilities for the dissection of discrete brain circuits in wide spatial coverage for mouse activity. The actuating mechanism enabled by a reed switch results in a simplified, low-power wireless operation and systematic experimental studies that are required for a range of logical operating conditions. In this study, we suggest two different actuating mechanisms by (1) a magnet or (2) a radio-frequency signal that consumes only under 300 µA for switching or channel selection, which is a several ten-folds reduction in power consumption when compared with any other existing systems such as embedded microcontrollers, near field communication, and Bluetooth. With the efficient dual-coil transmission antenna, the proposed platform leads to more advantageous power budgets that offer improved volumetric and angular coverage in a cage while minimizing the secondary effects associated with a corresponding increase in transmitted power.


Assuntos
Encéfalo/fisiologia , Próteses e Implantes , Tecnologia sem Fio , Animais , Magnetismo , Camundongos , Ondas de Rádio , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA