Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1866, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000716

RESUMO

This Article contains an error in Equation 2 in that the denominator is inverted. This has not been fixed in the PDF or HTML versions of the Article but can be seen in the associated Correction.

2.
Front Chem ; 6: 412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30255017

RESUMO

Squaraine dyes have shown promising properties for high performance organic solar cells owing to their advantages of intense absorption and high absorption coefficients in the visible and near-infrared (NIR) regions. In this work, to directly compare the photovoltaic performance of solution- and vacuum-processed small-molecule bulk heterojunction (SMBHJ) solar cells, we employed a squaraine small molecular dye, 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (DIBSQ), as an electron donor combined with fullerene acceptors to fabricate SMBHJ cells either from solution or vacuum deposition process. The solution-processed SMBHJ cell possesses a power conversion efficiency (PCE) of ~4.3%, while the vacuum-processed cell provides a PCE of ~6.3%. Comparison of the device performance shows that the vacuum-processed SMBHJ cells possess higher short-circuit current density, fill factor and thus higher PCE than the solution-processed devices, which should be assigned to more efficient charge transport and charge extraction in the vacuum-processed SMBHJ cells. However, solution-processed SMBHJ cells demonstrate more pronounced temperature-dependent device performance and higher device stability. This study indicates the great potential of DIBSQ in photovoltaic application via both of solution and vacuum processing techniques.

3.
Nano Lett ; 17(8): 5140-5147, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28727458

RESUMO

We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (VOC), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the VOC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the VOC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing VOC, thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

4.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27879016

RESUMO

A formamidinium(FA)-based perovskite showns superior optoelectronic properties including better stability than methylammonium-based counterparts. Pure FA-perovskite-based light-emitting diodes (LEDs) with high efficiency are reported. Interestingly, the LED clearly shows a sub-bandgap emission at 1.7 V (bandgap 2.3 eV). This important discovery provides further insights of the charge transport mechanism in perovskite-based optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 8(17): 11076-83, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27058279

RESUMO

Here, we demonstrate an effective low-temperature approach to fabricate a uniform and pinhole-free compact TiO2 layer for enhancing photovoltaic performance of perovskite solar cells. TiCl4 was used to modify TiO2 for efficient charge generation and significantly reduced recombination loss. We found that a TiO2 layer with an appropriate TiCl4 treatment possesses a smooth surface with full coverage of the conductive electrode. Further studies on charge carrier dynamics confirmed that the TiCl4 treatment improves the contact of the TiO2/perovskite interface, facilitating charge extraction and suppressing charge recombination. On the basis of the treatment, we improved the open circuit voltage from 1.01 V of the reference cell to 1.08 V, and achieved a power conversion efficiency of 16.4%.

6.
Nat Commun ; 7: 10214, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26750664

RESUMO

Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg(-1), given the fact that the device is constructed on a 57-µm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells.

7.
Nat Nanotechnol ; 11(1): 75-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26457966

RESUMO

Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

8.
Adv Mater ; 28(3): 440-6, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26588665

RESUMO

Conjugated small-molecule hole-transport materials (HTMs) with tunable energy levels are designed and synthesized for efficient perovskite solar cells. A champion device with efficiency of 16.2% is demonstrated using a dopant-free DERDTS-TBDT HTM, while the DORDTS-DFBT-HTM-based device shows an inferior performance of 6.2% due to its low hole mobility and unmatched HOMO level with the valence band of perovskite film.

9.
J Am Chem Soc ; 137(49): 15540-7, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26592525

RESUMO

In perovskite based planar heterojunction solar cells, the interface between the TiO2 compact layer and the perovskite film is critical for high photovoltaic performance. The deep trap states on the TiO2 surface induce several challenging issues, such as charge recombination loss and poor stability etc. To solve the problems, we synthesized a triblock fullerene derivative (PCBB-2CN-2C8) via rational molecular design for interface engineering in the perovskite solar cells. Modifying the TiO2 surface with the compound significantly improves charge extraction from the perovskite layer. Together with its uplifted surface work function, open circuit voltage and fill factor are dramatically increased from 0.99 to 1.06 V, and from 72.2% to 79.1%, respectively, resulting in 20.7% improvement in power conversion efficiency for the best performing devices. Scrutinizing the electrical properties of this modified interfacial layer strongly suggests that PCBB-2CN-2C8 passivates the TiO2 surface and thus reduces charge recombination loss caused by the deep trap states of TiO2. The passivation effect is further proven by stability testing of the perovskite solar cells with shelf lifetime under ambient conditions improved by a factor of more than 4, from ∼40 h to ∼200 h, using PCBB-2CN-2C8 as the TiO2 modification layer. This work offers not only a promising material for cathode interface engineering, but also provides a viable approach to address the challenges of deep trap states on TiO2 surface in planar perovskite solar cells.

10.
Nano Lett ; 15(10): 6514-20, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26389692

RESUMO

In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

11.
Adv Mater ; 27(41): 6496-503, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26418337

RESUMO

Modified 3,4-ethylenedioxythiophene is employed as the conjugated side chain in conjugated polymers, which can significantly depress the dark current of the polymer photodetectors with little associated decrease in photovoltaic properties, thus enhanceing the detectivities. This approach can be applied to a variety of conjugated polymers covering a photoresponse range from UV to NIR.

12.
13.
Nat Commun ; 6: 6391, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25736823

RESUMO

Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically <10%, insufficient for achieving grid parity. Here we demonstrate an efficient double-junction photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells.

14.
Nano Lett ; 15(1): 662-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25513830

RESUMO

We successfully demonstrated an integrated perovskite/bulk-heterojunction (BHJ) photovoltaic device for efficient light harvesting and energy conversion. Our device efficiently integrated two photovoltaic layers, namely a perovskite film and organic BHJ film, into the device. The device structure is ITO/TiO2/perovskite/BHJ/MoO3/Ag. A wide bandgap small molecule DOR3T-TBDT was used as donor in the BHJ film, and a power conversion efficiency (PCE) of 14.3% was achieved in the integrated device with a high short circuit current density (JSC) of 21.2 mA cm(-2). The higher JSC as compared to that of the traditional perovskite/HTL (hole transporting layer) device (19.3 mA cm(-2)) indicates that the BHJ film absorbs light and contributes to the current density of the device. Our result further suggests that the HTL in traditional perovskite solar cell, even with good light absorption capability, cannot contribute to the overall device photocurrent, unless this HTL becomes a BHJ layer (by adding electron transporting material like PC71BM).

15.
Nat Commun ; 5: 5404, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25410021

RESUMO

Photodetectors capture optical signals with a wide range of incident photon flux density and convert them to electrical signals instantaneously. They have many important applications including imaging, optical communication, remote control, chemical/biological sensing and so on. Currently, GaN, Si and InGaAs photodetectors are used in commercially available products. Here we demonstrate a novel solution-processed photodetector based on an organic-inorganic hybrid perovskite material. Operating at room temperature, the photodetectors exhibit a large detectivity (the ability to detect weak signals) approaching 10(14) Jones, a linear dynamic range over 100 decibels (dB) and a fast photoresponse with 3-dB bandwidth up to 3 MHz. The performance is significantly better than most of the organic, quantum dot and hybrid photodetectors reported so far; and is comparable, or even better than, the traditional inorganic semiconductor-based photodetectors. Our results indicate that with proper device interface design, perovskite materials are promising candidates for low-cost, high-performance photodetectors.

16.
Science ; 345(6196): 542-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082698

RESUMO

Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

17.
Nano Lett ; 14(7): 4158-63, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24960309

RESUMO

To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

18.
ACS Nano ; 8(2): 1674-80, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24386933

RESUMO

Perovskite compounds have attracted recently great attention in photovoltaic research. The devices are typically fabricated using condensed or mesoporous TiO2 as the electron transport layer and 2,2'7,7'-tetrakis-(N,N-dip-methoxyphenylamine)9,9'-spirobifluorene as the hole transport layer. However, the high-temperature processing (450 °C) requirement of the TiO2 layer could hinder the widespread adoption of the technology. In this report, we adopted a low-temperature processing technique to attain high-efficiency devices in both rigid and flexible substrates, using device structure substrate/ITO/PEDOT:PSS/CH(3)NH(3)PbI(3-x)Cl(x)/PCBM/Al, where PEDOT:PSS and PCBM are used as hole and electron transport layers, respectively. Mixed halide perovskite, CH(3)NH(3)PbI(3-x)Cl(x), was used due to its long carrier lifetime and good electrical properties. All of these layers are solution-processed under 120 °C. Based on the proposed device structure, power conversion efficiency (PCE) of 11.5% is obtained in rigid substrates (glass/ITO), and a 9.2% PCE is achieved for a polyethylene terephthalate/ITO flexible substrate.

19.
J Am Chem Soc ; 136(2): 622-5, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24359486

RESUMO

Hybrid organic/inorganic perovskites (e.g., CH3NH3PbI3) as light absorbers are promising players in the field of third-generation photovoltaics. Here we demonstrate a low-temperature vapor-assisted solution process to construct polycrystalline perovskite thin films with full surface coverage, small surface roughness, and grain size up to microscale. Solar cells based on the as-prepared films achieve high power conversion efficiency of 12.1%, so far the highest efficiency based on CH3NH3PbI3 with the planar heterojunction configuration. This method provides a simple approach to perovskite film preparation and paves the way for high reproducibility of films and devices. The underlying kinetic and thermodynamic parameters regarding the perovskite film growth are discussed as well.

20.
Sci Rep ; 3: 3356, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24285006

RESUMO

A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA