Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Genet ; 55(2): 291-295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282569

RESUMO

The coat color phenotype 'sable' occurs in the English Cocker Spaniel dog breed. It closely resembles other canine color patterns known as domino/grizzle/pied (eA allele) and grizzle/domino (eG allele) determined by variants in the melanocortin 1 receptor gene (MC1R; 'extension' or E locus), a key multi-allele regulator of coat color. We examined genetic variation in MC1R, and found one new non-synonymous variant, c.250G>A (p.(Asp84Asn)), consistently associated with the English Cocker Spaniel 'sable' phenotype. We propose calling this newly identified allele eH and further show that the eA , eH and eG (previously known as EG ) alleles associate with similar phenotypes in dogs impacting genotypes regulated by beta-defensin 103 gene (CBD103; K locus) and agouti signaling protein gene (ASIP; A locus) in the absence of the EM and E alleles. This suggests that all three alleles are putative reduced-function variants of the MC1R gene. We propose the revised and updated E locus dominance hierarchy to be EM > E > eA /eH /eG > e1-3 .


Assuntos
Cor de Cabelo , Receptor Tipo 1 de Melanocortina , Cães , Animais , Cor de Cabelo/genética , Receptor Tipo 1 de Melanocortina/genética , Genótipo , Fenótipo , Alelos
2.
PLoS Genet ; 19(2): e1010651, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36848397

RESUMO

Hundreds of genetic variants implicated in Mendelian disease have been characterized in dogs and commercial screening is being offered for most of them worldwide. There is typically limited information available regarding the broader population frequency of variants and uncertainty regarding their functional and clinical impact in ancestry backgrounds beyond the discovery breed. Genetic panel screening of disease-associated variants, commercially offered directly to the consumer or via a veterinary clinician, provides an opportunity to establish large-scale cohorts with phenotype data available to address open questions related to variant prevalence and relevance. We screened the largest canine cohort examined in a single study to date (1,054,293 representative dogs from our existing cohort of 3.5 million; a total of 811,628 mixed breed dogs and 242,665 purebreds from more than 150 countries) to examine the prevalence and distribution of a total of 250 genetic disease-associated variants in the general population. Electronic medical records from veterinary clinics were available for 43.5% of the genotyped dogs, enabling the clinical impact of variants to be investigated. We provide detailed frequencies for all tested variants across breeds and find that 57% of dogs carry at least one copy of a studied Mendelian disease-associated variant. Focusing on a subset of variants, we provide evidence of full penetrance for 10 variants, and plausible evidence for clinical significance of 22 variants, on diverse breed backgrounds. Specifically, we report that inherited hypocatalasia is a notable oral health condition, confirm that factor VII deficiency presents as subclinical bleeding propensity and verify two genetic causes of reduced leg length. We further assess genome-wide heterozygosity levels in over 100 breeds, and show that a reduction in genome-wide heterozygosity is associated with an increased Mendelian disease variant load. The accumulated knowledge represents a resource to guide discussions on genetic test relevance by breed.


Assuntos
Relevância Clínica , Testes Genéticos , Cães , Humanos , Animais , Prevalência , Frequência do Gene , Fenótipo
3.
PLoS Genet ; 18(6): e1009804, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709088

RESUMO

In the largest DNA-based study of domestic cats to date, 11,036 individuals (10,419 pedigreed cats and 617 non-pedigreed cats) were genotyped via commercial panel testing elucidating the distribution and frequency of known disease, blood type, and physical trait associated genetic variants across cat breeds. This study provides allele frequencies for many disease-associated variants for the first time and provides updates on previously reported information with evidence suggesting that DNA testing has been effectively used to reduce disease associated variants within certain pedigreed cat populations over time. We identified 13 disease-associated variants in 47 breeds or breed types in which the variant had not previously been documented, highlighting the relevance of comprehensive genetic screening across breeds. Three disease-associated variants were discovered in non-pedigreed cats only. To investigate the causality of nine disease-associated variants in cats of different breed backgrounds our veterinarians conducted owner interviews, reviewed clinical records, and invited cats to have follow-up clinical examinations. Additionally, genetic variants determining blood types A, B and AB, which are relevant clinically and in cat breeding, were genotyped. Appearance-associated genetic variation in all cats is also discussed. Lastly, genome-wide SNP heterozygosity levels were calculated to obtain a comparable measure of the genetic diversity in different cat breeds. This study represents the first comprehensive exploration of informative Mendelian variants in felines by screening over 10,000 pedigreed cats. The results qualitatively contribute to the understanding of feline variant heritage and genetic diversity and demonstrate the clinical utility and importance of such information in supporting breeding programs and the research community. The work also highlights the crucial commitment of pedigreed cat breeders and registries in supporting the establishment of large genomic databases, that when combined with phenotype information can advance scientific understanding and provide insights that can be applied to improve the health and welfare of cats.


Assuntos
Variação Genética , Genoma , Animais , Gatos/genética , Frequência do Gene , Genoma/genética , Epidemiologia Molecular , Fenótipo
4.
Canine Med Genet ; 8(1): 12, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852838

RESUMO

BACKGROUND: Dog breeds are known for their distinctive body shape, size, coat color, head type and behaviors, features that are relatively similar across members of a breed. Unfortunately, dog breeds are also characterized by distinct predispositions to disease. We explored the relationships between inbreeding, morphology and health using genotype based inbreeding estimates, body weight and insurance data for morbidity. RESULTS: The average inbreeding based on genotype across 227 breeds was Fadj = 0.249 (95% CI 0.235-0.263). There were significant differences in morbidity between breeds with low and high inbreeding (H = 16.49, P = 0.0004). There was also a significant difference in morbidity between brachycephalic breeds and non-brachycephalic breeds (P = 0.0048) and between functionally distinct groups of breeds (H = 14.95 P < 0.0001). Morbidity was modeled using robust regression analysis and both body weight (P < 0.0001) and inbreeding (P = 0.013) were significant (r2 = 0.77). Smaller less inbred breeds were healthier than larger more inbred breeds. CONCLUSIONS: In this study, body size and inbreeding along with deleterious morphologies contributed to increases in necessary health care in dogs.

5.
Canine Med Genet ; 7(1): 16, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33292722

RESUMO

BACKGROUND: The Melanocortin 1 Receptor (MC1R) plays a central role in regulation of coat color determination in various species and is commonly referred to as the "E (extension) Locus". Allelic variation of the MC1R gene is associated with coat color phenotypes EM (melanistic mask), EG (grizzle/domino) and e1-3 (recessive red) in dogs. In addition, a previous study of archeological dog specimens over 10,000 years of age identified a variant p.R301C in the MC1R gene that may have influenced coat color of early dogs. RESULTS: Commercial genotyping of 11,750 dog samples showed the R301C variant of the MC1R gene was present in 35 breeds or breed varieties, at an allele frequency of 1.5% in the tested population. We detected no linkage disequilibrium between R301C and other tested alleles of the E locus. Based on current convention we propose that R301C should be considered a novel allele of the E locus, which we have termed eA for "e ancient red". Phenotype analysis of owner-provided dog pictures reveals that the eA allele has an impact on coat color and is recessive to wild type E and dominant to the e alleles. In dominant black (KB/*) dogs it can prevent the phenotypic expression of the K locus, and the expressed coat color is solely determined by the A locus. In the absence of dominant black, eA/eA and eA/e genotypes result in the coat color patterns referred to in their respective breed communities as domino in Alaskan Malamute and other Spitz breeds, grizzle in Chihuahua, and pied in Beagle. CONCLUSIONS: This study demonstrates a large genotype screening effort to identify the frequency and distribution of the MC1R R301C variant, one of the earliest mutations captured by canine domestication, and citizen science empowered characterization of its impact on coat color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA