Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cancer Res Commun ; 4(6): 1430-1440, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38717161

RESUMO

The PI3K pathway regulates essential cellular functions and promotes chemotherapy resistance. Activation of PI3K pathway signaling is commonly observed in triple-negative breast cancer (TNBC). However previous studies that combined PI3K pathway inhibitors with taxane regimens have yielded inconsistent results. We therefore set out to examine whether the combination of copanlisib, a clinical grade pan-PI3K inhibitor, and eribulin, an antimitotic chemotherapy approved for taxane-resistant metastatic breast cancer, improves the antitumor effect in TNBC. A panel of eight TNBC patient-derived xenograft (PDX) models was tested for tumor growth response to copanlisib and eribulin, alone or in combination. Treatment-induced signaling changes were examined by reverse phase protein array, immunohistochemistry (IHC) and 18F-fluorodeoxyglucose PET (18F-FDG PET). Compared with each drug alone, the combination of eribulin and copanlisib led to enhanced tumor growth inhibition, which was observed in both eribulin-sensitive and -resistant TNBC PDX models, regardless of PI3K pathway alterations or PTEN status. Copanlisib reduced PI3K signaling and enhanced eribulin-induced mitotic arrest. The combination enhanced induction of apoptosis compared with each drug alone. Interestingly, eribulin upregulated PI3K pathway signaling in PDX tumors, as demonstrated by increased tracer uptake by 18F-FDG PET scan and AKT phosphorylation by IHC. These changes were inhibited by the addition of copanlisib. These data support further clinical development for the combination of copanlisib and eribulin and led to a phase I/II trial of copanlisib and eribulin in patients with metastatic TNBC. SIGNIFICANCE: In this research, we demonstrated that the pan-PI3K inhibitor copanlisib enhanced the cytotoxicity of eribulin in a panel of TNBC PDX models. The improved tumor growth inhibition was irrespective of PI3K pathway alteration and was corroborated by the enhanced mitotic arrest and apoptotic induction observed in PDX tumors after combination therapy compared with each drug alone. These data provide the preclinical rationale for the clinical testing in TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Furanos , Cetonas , Pirimidinas , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Cetonas/farmacologia , Cetonas/administração & dosagem , Cetonas/uso terapêutico , Animais , Furanos/farmacologia , Furanos/administração & dosagem , Furanos/uso terapêutico , Humanos , Feminino , Camundongos , Pirimidinas/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/administração & dosagem , Quinazolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Policetídeos de Poliéter
2.
JAMA Oncol ; 10(3): 362-371, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236590

RESUMO

Importance: Adding fulvestrant to anastrozole (A+F) improved survival in postmenopausal women with advanced estrogen receptor (ER)-positive/ERBB2 (formerly HER2)-negative breast cancer. However, the combination has not been tested in early-stage disease. Objective: To determine whether neoadjuvant fulvestrant or A+F increases the rate of pathologic complete response or ypT1-2N0/N1mic/Ki67 2.7% or less residual disease (referred to as endocrine-sensitive disease) over anastrozole alone. Design, Setting, and Participants: A phase 3 randomized clinical trial assessing differences in clinical and correlative outcomes between each of the fulvestrant-containing arms and the anastrozole arm. Postmenopausal women with clinical stage II to III, ER-rich (Allred score 6-8 or >66%)/ERBB2-negative breast cancer were included. All analyses were based on data frozen on March 2, 2023. Interventions: Patients received anastrozole, fulvestrant, or a combination for 6 months preoperatively. Tumor Ki67 was assessed at week 4 and optionally at week 12, and if greater than 10% at either time point, the patient switched to neoadjuvant chemotherapy or immediate surgery. Main Outcomes and Measures: The primary outcome was the endocrine-sensitive disease rate (ESDR). A secondary outcome was the percentage change in Ki67 after 4 weeks of neoadjuvant endocrine therapy (NET) (week 4 Ki67 suppression). Results: Between February 2014 and November 2018, 1362 female patients (mean [SD] age, 65.0 [8.2] years) were enrolled. Among the 1298 evaluable patients, ESDRs were 18.7% (95% CI, 15.1%-22.7%), 22.8% (95% CI, 18.9%-27.1%), and 20.5% (95% CI, 16.8%-24.6%) with anastrozole, fulvestrant, and A+F, respectively. Compared to anastrozole, neither fulvestrant-containing regimen significantly improved ESDR or week 4 Ki67 suppression. The rate of week 4 or week 12 Ki67 greater than 10% was 25.1%, 24.2%, and 15.7% with anastrozole, fulvestrant, and A+F, respectively. Pathologic complete response/residual cancer burden class I occurred in 8 of 167 patients and 17 of 167 patients, respectively (15.0%; 95% CI, 9.9%-21.3%), after switching to neoadjuvant chemotherapy due to week 4 or week 12 Ki67 greater than 10%. PAM50 subtyping derived from RNA sequencing of baseline biopsies available for 753 patients (58%) identified 394 luminal A, 304 luminal B, and 55 nonluminal tumors. A+F led to a greater week 4 Ki67 suppression than anastrozole alone in luminal B tumors (median [IQR], -90.4% [-95.2 to -81.9%] vs -76.7% [-89.0 to -55.6%]; P < .001), but not luminal A tumors. Thirty-six nonluminal tumors (65.5%) had a week 4 or week 12 Ki67 greater than 10%. Conclusions and Relevance: In this randomized clinical trial, neither fulvestrant nor A+F significantly improved the 6-month ESDR over anastrozole in ER-rich/ERBB2-negative breast cancer. Aromatase inhibition remains the standard-of-care NET. Differential NET response by PAM50 subtype in exploratory analyses warrants further investigation. Trial Registration: ClinicalTrials.gov Identifier: NCT01953588.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Idoso , Feminino , Humanos , Anastrozol/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/patologia , Fulvestranto , Antígeno Ki-67 , Terapia Neoadjuvante , Nitrilas/efeitos adversos , Pós-Menopausa , Receptor ErbB-2 , Receptores de Estrogênio , Triazóis/efeitos adversos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Pessoa de Meia-Idade
3.
Cancer Res ; 83(24): 4161-4178, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098449

RESUMO

Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases , Inibidores de Checkpoint Imunológico/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina , Células Endoteliais/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Anilidas/farmacologia , Anilidas/uso terapêutico , RNA Nuclear Pequeno/uso terapêutico
4.
NPJ Breast Cancer ; 9(1): 1, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609389

RESUMO

Patients with ER+/HER2+ breast cancer (BC) are less likely to achieve pathological complete response (pCR) after chemotherapy with dual HER2 blockade than ER-/HER2+ BC. Endocrine therapy plus trastuzumab is effective in advanced ER+/HER2+ BC. Inhibition of CDK4/6 and HER2 results in synergistic cell proliferation reduction. We combined palbociclib, letrozole, and trastuzumab (PLT) as a chemotherapy-sparing regimen. We evaluated neoadjuvant PLT in early ER+/HER2+ BC. Primary endpoint was pCR after 16 weeks. Research biopsies were performed for whole exome and RNA sequencing, PAM50 subtyping, and Ki67 assessment for complete cell cycle arrest (CCCA: Ki67 ≤ 2.7%). After 26 patients, accrual stopped due to futility. pCR (residual cancer burden-RCB 0) was 7.7%, RCB 0/I was 38.5%. Grade (G) 3/4 treatment-emergent adverse events occurred in 19. Among these, G3/4 neutropenia was 50%, hypertension 26.9%, and leucopenia 7.7%. Analysis indicated CCCA in 85% at C1 day 15 (C1D15), compared to 27% at surgery after palbociclib was discontinued. Baseline PAM50 subtyping identified 31.2% HER2-E, 43.8% Luminal B, and 25% Luminal A. 161 genes were differentially expressed comparing C1D15 to baseline. MKI67, TK1, CCNB1, AURKB, and PLK1 were among the genes downregulated, consistent with CCCA at C1D15. Molecular Signatures Database gene-sets analyses demonstrated downregulated processes involved in proliferation, ER and mTORC1 signaling, and DNA damage repair at C1D15, consistent with the study drug's mechanisms of action. Neoadjuvant PLT showed a pCR of 7.7% and an RCB 0/I rate of 38.5%. RNA sequencing and Ki67 data indicated potent anti-proliferative effects of study treatments. ClinicalTrials.gov- NCT02907918.

5.
Cancer Discov ; 12(11): 2586-2605, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001024

RESUMO

Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-number aberrations identified a resistance-associated 19q13.31-33 deletion where LIG1, POLD1, and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were associated with lack of pathologic complete response, higher chromosomal instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer types, demonstrating broader clinical implications. SIGNIFICANCE: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape of chemotherapy response associations, including a 19q13.31-33 somatic deletion encoding genes serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Proteogenômica , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carboplatina , Proteômica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Neoadjuvante , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
7.
Nat Commun ; 12(1): 5086, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429404

RESUMO

Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors.


Assuntos
Xenoenxertos , Neoplasias/genética , Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Genômica , Humanos , Masculino , Camundongos , Modelos Biológicos , Mutação , Transcriptoma
8.
Cell Rep ; 34(7): 108749, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596420

RESUMO

Aberrant expression of nuclear transporters and deregulated subcellular localization of their cargo proteins are emerging as drivers and therapeutic targets of cancer. Here, we present evidence that the nuclear exporter exportin-6 and its cargo profilin-1 constitute a functionally important and frequently deregulated axis in cancer. Exportin-6 upregulation occurs in numerous cancer types and is associated with poor patient survival. Reducing exportin-6 level in breast cancer cells triggers antitumor effects by accumulating nuclear profilin-1. Mechanistically, nuclear profilin-1 interacts with eleven-nineteen-leukemia protein (ENL) within the super elongation complex (SEC) and inhibits the ability of the SEC to drive transcription of numerous pro-cancer genes including MYC. XPO6 and MYC are positively correlated across diverse cancer types including breast cancer. Therapeutically, exportin-6 loss sensitizes breast cancer cells to the bromodomain and extra-terminal (BET) inhibitor JQ1. Thus, exportin-6 upregulation is a previously unrecognized cancer driver event by spatially inhibiting nuclear profilin-1 as a tumor suppressor.


Assuntos
Carioferinas/metabolismo , Neoplasias/metabolismo , Profilinas/antagonistas & inibidores , Profilinas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Carioferinas/genética , Células MCF-7 , Camundongos , Camundongos Nus , Neoplasias/genética , Profilinas/genética , Análise de Sobrevida , Regulação para Cima
9.
Cancers (Basel) ; 12(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371187

RESUMO

PI3K pathway activation is frequently observed in triple negative breast cancer (TNBC). However, single agent PI3K inhibitors have shown limited anti-tumor activity. To investigate biomarkers of response and resistance mechanisms, we tested 17 TNBC patient-derived xenograft (PDX) models representing diverse genomic backgrounds and varying degrees of PI3K pathway signaling activities for their tumor growth response to the pan-PI3K inhibitor, BKM120. Baseline and post-treatment PDX tumors were subjected to reverse phase protein array (RPPA) to identify protein markers associated with tumor growth response. While BKM120 consistently reduced PI3K pathway activity, as demonstrated by reduced levels of phosphorylated AKT, percentage tumor growth inhibition (%TGI) ranged from 35% in the least sensitive to 84% in the most sensitive model. Several biomarkers showed significant association with resistance, including elevated baseline levels of growth factor receptors (EGFR, pHER3 Y1197), PI3Kp85 regulatory subunit, anti-apoptotic protein BclXL, EMT (Vimentin, MMP9, IntegrinaV), NFKB pathway (IkappaB, RANKL), and intracellular signaling molecules including Caveolin, CBP, and KLF4, as well as treatment-induced increases in the levels of phosphorylated forms of Aurora kinases. Interestingly, increased AKT phosphorylation or PTEN loss at baseline were not significantly correlated to %TGI. These results provide important insights into biomarker development for PI3K inhibitors in TNBC.

10.
Nat Commun ; 11(1): 532, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988290

RESUMO

Cancer proteogenomics promises new insights into cancer biology and treatment efficacy by integrating genomics, transcriptomics and protein profiling including modifications by mass spectrometry (MS). A critical limitation is sample input requirements that exceed many sources of clinically important material. Here we report a proteogenomics approach for core biopsies using tissue-sparing specimen processing and microscaled proteomics. As a demonstration, we analyze core needle biopsies from ERBB2 positive breast cancers before and 48-72 h after initiating neoadjuvant trastuzumab-based chemotherapy. We show greater suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases associated with pathological complete response, and identify potential causes of treatment resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms including androgen receptor signaling, mucin overexpression and an inactive immune microenvironment. The clinical utility and discovery potential of proteogenomics at biopsy-scale warrants further investigation.


Assuntos
Neoplasias da Mama/genética , Proteogenômica/métodos , Receptor ErbB-2/genética , Trastuzumab/uso terapêutico , Biópsia com Agulha de Grande Calibre , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Regulação para Baixo , Humanos , Projetos Piloto , Receptor ErbB-2/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
J Natl Cancer Inst ; 112(7): 737-746, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665365

RESUMO

BACKGROUND: Unlike estrogen receptor (ER)-negative breast cancer, ER-positive breast cancer outcome is less influenced by lymphocyte content, indicating the presence of immune tolerance mechanisms that may be specific to this disease subset. METHODS: A supervised analysis of microarray data from the ACOSOG Z1031 (Alliance) neoadjuvant aromatase inhibitor (AI) trial identified upregulated genes in Luminal (Lum) B breast cancers that correlated with AI-resistant tumor proliferation (percentage of Ki67-positive cancer nuclei, Pearson r > 0.4) (33 cases Ki67 > 10% on AI) vs LumB breast cancers that were more AI sensitive (33 cases Ki67 < 10% on AI). Overrepresentation analysis was performed using WebGestalt. All statistical tests were two-sided. RESULTS: Thirty candidate genes positively correlated (r ≥ 0.4) with AI-resistant proliferation in LumB and were upregulated greater than twofold. Gene ontologies identified that the targetable immune checkpoint (IC) components IDO1, LAG3, and PD1 were overrepresented resistance candidates (P ≤ .001). High IDO1 mRNA was associated with poor prognosis in LumB disease (Molecular Taxonomy of Breast Cancer International Consortium, hazard ratio = 1.43, 95% confidence interval = 1.04 to 1.98, P = .03). IDO1 also statistically significantly correlated with STAT1 at protein level in LumB disease (Pearson r = 0.74). As a composite immune tolerance signature, expression of IFN-γ/STAT1 pathway components was associated with higher baseline Ki67, lower estrogen, and progesterone receptor mRNA levels and worse disease-specific survival (P = .002). In a tissue microarray analysis, IDO1 was observed in stromal cells and tumor-associated macrophages, with a higher incidence in LumB cases. Furthermore, IDO1 expression was associated with a macrophage mRNA signature (M1 by CIBERSORT Pearson r = 0.62 ) and by tissue microarray analysis. CONCLUSIONS: Targetable IC components are upregulated in the majority of endocrine therapy-resistant LumB cases. Our findings provide rationale for IC inhibition in poor-outcome ER-positive breast cancer.


Assuntos
Antígenos CD/imunologia , Neoplasias da Mama/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígenos CD/biossíntese , Antígenos CD/genética , Antineoplásicos Hormonais/uso terapêutico , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interferon gama/metabolismo , Letrozol/uso terapêutico , Prognóstico , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Análise Serial de Tecidos , Transcriptoma , Regulação para Cima , Proteína do Gene 3 de Ativação de Linfócitos
12.
FASEB J ; 33(2): 1644-1657, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30161001

RESUMO

Despite the success of approved systemic therapies for estrogen receptor α (ER)-positive breast cancer, drug resistance remains common. We hypothesized that secreted factors from the human tumor microenvironment could modulate drug resistance. We previously screened a library of 297 recombinant-secreted microenvironmental proteins for the ability to confer resistance to the anti-estrogen fulvestrant in 2 ER+ breast cancer cell lines. Herein, we considered whether factors that enhanced drug sensitivity could be repurposed as therapeutics and provide leads for drug development. Screening data revealed bone morphogenic protein (BMP)4 as a factor that inhibited cell growth and synergized with approved anti-estrogens and cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). BMP4-mediated growth inhibition was dependent on type I receptor activin receptor-like kinase (ALK)3-dependent phosphorylation (P) of mothers against decapentaplegic homolog (SMAD/P-SMAD)1 and 5, which could be reversed by BMP receptor inhibitors and ALK3 knockdown. The primary effect of BMP4 on cell fate was cell-cycle arrest, in which RNA sequencing, immunoblot analysis, and RNA interference revealed to be dependent on p21WAF1/Cip1 upregulation. BMP4 also enhanced sensitivity to approved inhibitors of mammalian target of rapamycin complex 1 and CDK4/6 via ALK3-mediated P-SMAD1/5 and p21 upregulation in anti-estrogen-resistant cells. Patients bearing primary ER+ breast tumors, exhibiting a transcriptomic signature of BMP4 signaling, had improved disease outcome following adjuvant treatment with anti-estrogen therapy, independently of age, tumor grade, and tumor stage. Furthermore, a transcriptomic signature of BMP4 signaling was predictive of an improved biologic response to the CDK4/6i palbociclib, in combination with an aromatase inhibitor in primary tumors. These findings highlight BMP4 and its downstream pathway activation as a therapeutic opportunity in ER+ breast cancer.-Shee, K., Jiang, A., Varn, F. S., Liu, S., Traphagen, N. A., Owens, P., Ma, C. X., Hoog, J., Cheng, C., Golub, T. R., Straussman, R., Miller, T. W. Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER+ breast cancer.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Neoplasias da Mama/metabolismo , Citocinas/metabolismo , Transdução de Sinais , Antagonistas de Androgênios/uso terapêutico , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Receptores de Estrogênio/metabolismo , Análise de Sobrevida , Transcriptoma , Microambiente Tumoral
13.
Cell Rep ; 24(6): 1434-1444.e7, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089255

RESUMO

RNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1-6 were fused in frame to C-terminal sequences from the partner gene. Functional properties include estrogen-independent growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions activate a metastasis-associated transcriptional program, induce cellular motility, and promote the development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions therefore trigger both endocrine therapy resistance and metastatic progression, explaining the association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be effective.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Fusão Gênica/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Transfecção
14.
Clin Cancer Res ; 24(19): 4887-4899, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793947

RESUMO

Purpose: This study was undertaken to conduct a comprehensive investigation of the role of DNA damage repair (DDR) defects in poor outcome ER+ disease.Experimental Design: Expression and mutational status of DDR genes in ER+ breast tumors were correlated with proliferative response in neoadjuvant aromatase inhibitor therapy trials (discovery dataset), with outcomes in METABRIC, TCGA, and Loi datasets (validation datasets), and in patient-derived xenografts. A causal relationship between candidate DDR genes and endocrine treatment response, and the underlying mechanism, was then tested in ER+ breast cancer cell lines.Results: Correlations between loss of expression of three genes: CETN2 (P < 0.001) and ERCC1 (P = 0.01) from the nucleotide excision repair (NER) and NEIL2 (P = 0.04) from the base excision repair (BER) pathways were associated with endocrine treatment resistance in discovery dataset, and subsequently validated in independent patient cohorts. Complementary mutation analysis supported associations between mutations in NER and BER genes and reduced endocrine treatment response. A causal role for CETN2, NEIL2, and ERCC1 loss in intrinsic endocrine resistance was experimentally validated in ER+ breast cancer cell lines, and in ER+ patient-derived xenograft models. Loss of CETN2, NEIL2, or ERCC1 induced endocrine treatment resistance by dysregulating G1-S transition, and therefore, increased sensitivity to CDK4/6 inhibitors. A combined DDR signature score was developed that predicted poor outcome in multiple patient cohorts.Conclusions: This report identifies DDR defects as a new class of endocrine treatment resistance drivers and indicates new avenues for predicting efficacy of CDK4/6 inhibition in the adjuvant treatment setting. Clin Cancer Res; 24(19); 4887-99. ©2018 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Animais , Antineoplásicos Hormonais/administração & dosagem , Inibidores da Aromatase/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Receptores de Estrogênio/genética , Tamoxifeno/administração & dosagem
15.
Cancer Res ; 78(10): 2732-2746, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29472518

RESUMO

Activation of PI3K signaling is frequently observed in triple-negative breast cancer (TNBC), yet PI3K inhibitors have shown limited clinical activity. To investigate intrinsic and adaptive mechanisms of resistance, we analyzed a panel of patient-derived xenograft models of TNBC with varying responsiveness to buparlisib, a pan-PI3K inhibitor. In a subset of patient-derived xenografts, resistance was associated with incomplete inhibition of PI3K signaling and upregulated MAPK/MEK signaling in response to buparlisib. Outlier phosphoproteome and kinome analyses identified novel candidates functionally important to buparlisib resistance, including NEK9 and MAP2K4. Knockdown of NEK9 or MAP2K4 reduced both baseline and feedback MAPK/MEK signaling and showed synthetic lethality with buparlisib in vitro A complex in/del frameshift in PIK3CA decreased sensitivity to buparlisib via NEK9/MAP2K4-dependent mechanisms. In summary, our study supports a role for NEK9 and MAP2K4 in mediating buparlisib resistance and demonstrates the value of unbiased omic analyses in uncovering resistance mechanisms to targeted therapy.Significance: Integrative phosphoproteogenomic analysis is used to determine intrinsic resistance mechanisms of triple-negative breast tumors to PI3K inhibition. Cancer Res; 78(10); 2732-46. ©2018 AACR.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Morfolinas/farmacologia , Quinases Relacionadas a NIMA/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Espectrometria de Massas , Camundongos , Proteômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 8(61): 104303-104314, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262642

RESUMO

High levels of expression of glycoprotein non-metastatic B (gpNMB) in triple negative breast cancer (TNBC) and its association with metastasis and recurrence make it an attractive target for therapy with the antibody drug conjugate, glembatumumab vedotin (CDX-011). This report describes the development of a companion PET-based diagnostic imaging agent using 89Zr-labeled glembatumumab ([89Zr]DFO-CR011) to potentially aid in the selection of patients most likely to respond to targeted treatment with CDX-011. [89Zr]DFO-CR011 was characterized for its pharmacologic properties in TNBC cell lines. Preclinical studies determined that [89Zr]DFO-CR011 binds specifically to gpNMB with high affinity (Kd = 25 ± 5 nM), immunoreactivity of 2.2-fold less than the native CR011, and its cellular uptake correlates with gpNMB expression (r = 0.95). In PET studies at the optimal imaging timepoint of 7 days p.i., the [89Zr]DFO-CR011 tumor uptake in gpNMB-expressing MDA-MB-468 xenografts had a mean SUV of 2.9, while significantly lower in gpNMB-negative MDA-MB-231 tumors with a mean SUV of 1.9. [89Zr]DFO-CR011 was also evaluated in patient-derived xenograft models of TNBC, where tumor uptake in vivo had a positive correlation with total gpNMB protein expression via ELISA (r = 0.79), despite the heterogeneity of gpNMB expression within the same group of PDX mice. Lastly, the radiation dosimetry calculated from biodistribution studies in MDA-MB-468 xenografts determined the effective dose for human use would be 0.54 mSv/MBq. Overall, these studies demonstrate that [89Zr]DFO-CR011 is a potential companion diagnostic imaging agent for CDX-011 which targets gpNMB, an emerging biomarker for TNBC.

17.
Breast Cancer Res ; 19(1): 123, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162134

RESUMO

BACKGROUND: Thymidine kinase 1 (TK1) is a cell cycle-regulated enzyme with peak expression in the S phase during DNA synthesis, and it is an attractive biomarker of cell proliferation. Serum TK1 activity has demonstrated prognostic value in patients with early-stage breast cancer. Because cyclin-dependent kinase 4/6 (CDK4/6) inhibitors prevent G1/S transition, we hypothesized that serum TK1 could be a biomarker for CDK4/6 inhibitors. We examined the drug-induced change in serum TK1 as well as its correlation with change in tumor Ki-67 levels in patients enrolled in the NeoPalAna trial (ClinicalTrials.gov identifier NCT01723774). METHODS: Patients with clinical stage II/III estrogen receptor-positive (ER+)/HER2-negative breast cancer enrolled in the NeoPalAna trial received an initial 4 weeks of anastrozole, followed by palbociclib on cycle 1, day 1 (C1D1) for four 28-day cycles, unless C1D15 tumor Ki-67 was > 10%, in which case patients went off study owing to inadequate response. Surgery occurred following 3-5 weeks of washout from the last dose of palbociclib, except in eight patients who received palbociclib (cycle 5) continuously until surgery. Serum TK1 activity was determined at baseline, C1D1, C1D15, and time of surgery, and we found that it was correlated with tumor Ki-67 and TK1 messenger RNA (mRNA) levels. RESULTS: Despite a significant drop in tumor Ki-67 with anastrozole monotherapy, there was no statistically significant change in TK1 activity. However, a striking reduction in TK1 activity was observed 2 weeks after initiation of palbociclib (C1D15), which then rose significantly with palbociclib washout. At C1D15, TK1 activity was below the detection limit (<20 DiviTum units per liter Du/L) in 92% of patients, indicating a profound effect of palbociclib. There was high concordance, at 89.8% (95% CI: 79.2% - 96.2%), between changes in serum TK1 and tumor Ki-67 in the same direction from C1D1 to C1D15 and from C1D15 to surgery time points. The sensitivity and specificity for the tumor Ki-67-based response by palbociclib-induced decrease in serum TK1 were 94.1% (95% CI 86.2% - 100%) and 84% (95% CI 69.6% -98.4%), respectively. The κ-statistic was 0.76 (p < 0.001) between TK1 and Ki-67, indicating substantial agreement. CONCLUSIONS: Serum TK1 activity is a promising pharmacodynamic marker of palbociclib in ER+ breast cancer, and its value in predicting response to CDK4/6 inhibitors warrants further investigation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01723774. Registered on 6 November 2012.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Piperazinas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Piridinas/farmacocinética , Timidina Quinase/sangue , Adulto , Idoso , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Terapia Combinada , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Terapia Neoadjuvante , Gradação de Tumores , Estadiamento de Neoplasias , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico
18.
Clin Cancer Res ; 23(22): 6823-6832, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28874413

RESUMO

Purpose: Hyperactivation of AKT is common and associated with endocrine resistance in estrogen receptor-positive (ER+) breast cancer. The allosteric pan-AKT inhibitor MK-2206 induced apoptosis in PIK3CA-mutant ER+ breast cancer under estrogen-deprived condition in preclinical studies. This neoadjuvant phase II trial was therefore conducted to test the hypothesis that adding MK-2206 to anastrozole induces pathologic complete response (pCR) in PIK3CA mutant ER+ breast cancer.Experimental Design: Potential eligible patients with clinical stage II/III ER+/HER2- breast cancer were preregistered and received anastrozole (goserelin if premenopausal) for 28 days in cycle 0 pending tumor PIK3CA sequencing. Patients positive for PIK3CA mutation in the tumor were eligible to start MK-2206 (150 mg orally weekly, with prophylactic prednisone) on cycle 1 day 2 (C1D2) and to receive a maximum of four 28-day cycles of combination therapy before surgery. Serial biopsies were collected at preregistration, C1D1 and C1D17.Results: Fifty-one patients preregistered and 16 of 22 with PIK3CA-mutant tumors received study drug. Three patients went off study due to C1D17 Ki67 >10% (n = 2) and toxicity (n = 1). Thirteen patients completed neoadjuvant therapy followed by surgery. No pCRs were observed. Rash was common. MK-2206 did not further suppress cell proliferation and did not induce apoptosis on C1D17 biopsies. Although AKT phosphorylation was reduced, PRAS40 phosphorylation at C1D17 after MK-2206 persisted. One patient acquired an ESR1 mutation at surgery.Conclusions: MK-2206 is unlikely to add to the efficacy of anastrozole alone in PIK3CA-mutant ER+ breast cancer and should not be studied further in the target patient population. Clin Cancer Res; 23(22); 6823-32. ©2017 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Anastrozol , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Centrifugação com Gradiente de Concentração , Terapia Combinada , Feminino , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Humanos , Estadiamento de Neoplasias , Nitrilas/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Análise de Sequência de DNA , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Triazóis/administração & dosagem
19.
Cancer Discov ; 7(10): 1168-1183, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28801307

RESUMO

Significant endocrine therapy-resistant tumor proliferation is present in ≥20% of estrogen receptor-positive (ER+) primary breast cancers and is associated with disease recurrence and death. Here, we uncover a link between intrinsic endocrine therapy resistance and dysregulation of the MutL mismatch repair (MMR) complex (MLH1/3, PMS1/2), and demonstrate a direct role for MutL complex loss in resistance to all classes of endocrine therapy. We find that MutL deficiency in ER+ breast cancer abrogates CHK2-mediated inhibition of CDK4, a prerequisite for endocrine therapy responsiveness. Consequently, CDK4/6 inhibitors (CDK4/6i) remain effective in MutL-defective ER+ breast cancer cells. These observations are supported by data from a clinical trial where a CDK4/6i was found to strongly inhibit aromatase inhibitor-resistant proliferation of MutL-defective tumors. These data suggest that diagnostic markers of MutL deficiency could be used to direct adjuvant CDK4/6i to a population of patients with breast cancer who exhibit marked resistance to the current standard of care.Significance: MutL deficiency in a subset of ER+ primary tumors explains why CDK4/6 inhibition is effective against some de novo endocrine therapy-resistant tumors. Therefore, markers of MutL dysregulation could guide CDK4/6 inhibitor use in the adjuvant setting, where the risk benefit ratio for untargeted therapeutic intervention is narrow. Cancer Discov; 7(10); 1168-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Neoplasias da Mama/patologia , Quinase do Ponto de Checagem 2/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas MutL/deficiência , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Camundongos , Transplante de Neoplasias , Receptores de Estrogênio/metabolismo
20.
Nature ; 548(7668): 471-475, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28813415

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) are fundamental drivers of the cell cycle and are required for the initiation and progression of various malignancies. Pharmacological inhibitors of CDK4/6 have shown significant activity against several solid tumours. Their primary mechanism of action is thought to be the inhibition of phosphorylation of the retinoblastoma tumour suppressor, inducing G1 cell cycle arrest in tumour cells. Here we use mouse models of breast carcinoma and other solid tumours to show that selective CDK4/6 inhibitors not only induce tumour cell cycle arrest, but also promote anti-tumour immunity. We confirm this phenomenon through transcriptomic analysis of serial biopsies from a clinical trial of CDK4/6 inhibitor treatment for breast cancer. The enhanced anti-tumour immune response has two underpinnings. First, CDK4/6 inhibitors activate tumour cell expression of endogenous retroviral elements, thus increasing intracellular levels of double-stranded RNA. This in turn stimulates production of type III interferons and hence enhances tumour antigen presentation. Second, CDK4/6 inhibitors markedly suppress the proliferation of regulatory T cells. Mechanistically, the effects of CDK4/6 inhibitors both on tumour cells and on regulatory T cells are associated with reduced activity of the E2F target, DNA methyltransferase 1. Ultimately, these events promote cytotoxic T-cell-mediated clearance of tumour cells, which is further enhanced by the addition of immune checkpoint blockade. Our findings indicate that CDK4/6 inhibitors increase tumour immunogenicity and provide a rationale for new combination regimens comprising CDK4/6 inhibitors and immunotherapies as anti-cancer treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Mimetismo Biológico/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Interferons/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , RNA de Cadeia Dupla/genética , Proteínas Repressoras/biossíntese , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Transcriptoma , Vírus/efeitos dos fármacos , Vírus/genética , Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA