Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nature ; 629(8012): 586-591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720080

RESUMO

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.

2.
Science ; 384(6692): 189-193, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603485

RESUMO

Inverted (pin) perovskite solar cells (PSCs) afford improved operating stability in comparison to their nip counterparts but have lagged in power conversion efficiency (PCE). The energetic losses responsible for this PCE deficit in pin PSCs occur primarily at the interfaces between the perovskite and the charge-transport layers. Additive and surface treatments that use passivating ligands usually bind to a single active binding site: This dense packing of electrically resistive passivants perpendicular to the surface may limit the fill factor in pin PSCs. We identified ligands that bind two neighboring lead(II) ion (Pb2+) defect sites in a planar ligand orientation on the perovskite. We fabricated pin PSCs and report a certified quasi-steady state PCE of 26.15 and 24.74% for 0.05- and 1.04-square centimeter illuminated areas, respectively. The devices retain 95% of their initial PCE after 1200 hours of continuous 1 sun maximum power point operation at 65°C.

3.
Small ; 20(34): e2402371, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597692

RESUMO

Quantum dot (QD) light-emitting diodes (QLEDs) are promising for next-generation displays, but suffer from carrier imbalance arising from lower hole injection compared to electron injection. A defect engineering strategy is reported to tackle transport limitations in nickel oxide-based inorganic hole-injection layers (HILs) and find that hole injection is able to enhance in high-performance InP QLEDs using the newly designed material. Through optoelectronic simulations, how the electronic properties of NiOx affect hole injection efficiency into an InP QD layer, finding that efficient hole injection depends on lowering the hole injection barrier and enhancing the acceptor density of NiOx is explored. Li doping and oxygen enriching are identified as effective strategies to control intrinsic and extrinsic defects in NiOx, thereby increasing acceptor density, as evidenced by density functional theory calculations and experimental validation. With fine-tuned inorganic HIL, InP QLEDs exhibit a luminance of 45 200 cd m-2 and an external quantum efficiency of 19.9%, surpassing previous inorganic HIL-based QLEDs. This study provides a path to designing inorganic materials for more efficient and sustainable lighting and display technologies.

4.
Angew Chem Int Ed Engl ; 63(8): e202316733, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38170453

RESUMO

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

5.
Adv Mater ; 36(4): e2310122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983739

RESUMO

III-V colloidal quantum dots (CQDs) are of interest in infrared photodetection, and recent developments in CQDs synthesis and surface engineering have improved performance. Here this work investigates photodetector stability, finding that the diffusion of zinc ions from charge transport layers (CTLs) into the CQDs active layer increases trap density therein, leading to rapid and irreversible performance loss during operation. In an effort to prevent this, this work introduces organic blocking layers between the CQDs and ZnO layers; but these negatively impact device performance. The device is then, allowing to use a C60:BCP as top electron-transport layer (ETL) for good morphology and process compatibility, and selecting NiOX as the bottom hole-transport layer (HTL). The first round of NiOX -based devices show efficient light response but suffer from high leakage current and a low open-circuit voltage (Voc) due to pinholes. This work introduces poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) with NiOX NC to form a hybrid HTL, an addition that reduces pinhole formation, interfacial trap density, and bimolecular recombination, enhancing carrier harvesting. The photodetectors achieve 53% external quantum efficiency (EQE) at 970 nm at 1 V applied bias, and they maintain 95% of initial performance after 19 h of continuous illuminated operation. The photodetectors retain over 80% of performance after 80 days of shelf storage.

6.
J Am Chem Soc ; 145(50): 27242-27247, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061040

RESUMO

Two-dimensional (2D) hybrid perovskites harness the chemical and structural versatility of organic compounds. Here, we explore 2D perovskites that incorporate both a first organic component, a primary ammonium cation, and a second neutral organic module. Through the experimental examination of 42 organic pairs with a range of functional groups and organic backbones, we identify five crystallization scenarios that occur upon mixing. Only one leads to the cointercalation of the organic modules with distinct and extended interlayer spacing, which is observed with the aid of X-ray diffraction (XRD) pattern analysis combined with cross-sectional transmission electron microscopy (TEM) and elemental analysis. We present a picture in which complementary pairs, capable of forming intermolecular bonds, cocrystallize with multiple structural arrangements. These arrangements are a function of the ratio of organic content, annealing temperature, and substrate surface characteristics. We highlight how noncovalent bonds, particularly hydrogen and halogen bonding, enable the influence over the organic sublattice in hybrid halide perovskites.

7.
ACS Appl Mater Interfaces ; 15(51): 59931-59938, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085700

RESUMO

Colloidal quantum dot (CQD) photodetectors (PDs) can detect wavelengths longer than the 1100 nm limit of silicon because of their highly tunable bandgaps. CQD PDs are acutely affected by the ligands that separate adjacent dots in a CQD-solid. Optimizing the exchange solution ligand concentration in the processing steps is crucial to achieving high photodetector performance. However, the complex mix of chemistry and optoelectronics involved in CQD PDs means that the effects of the exchange solution ligand concentration on device physics are poorly understood. Here we report direct correspondence between simulated and experimental transient photocurrent responses in CQD PDs. For both deficient and excess conditions, our model demonstrated the experimental changes to the transient photocurrent aligned with changes in trap state density. Combining transient photoluminescence, absorption, and photocurrent with this simulation model, we revealed that different mechanisms are responsible for the increased trap density induced by excess and deficient active layer ligand concentrations.

8.
Sci Bull (Beijing) ; 68(23): 2954-2961, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37919156

RESUMO

In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40-220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10-3 cm2 V-1 s-1; hole mobility: 7.0 × 10-3 cm2 V-1 s-1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40-220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.

9.
Adv Mater ; 35(46): e2306147, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734861

RESUMO

In the III-V family of colloidal quantum dot (CQD) semiconductors, InSb promises access to a wider range of infrared wavelengths compared to many light-sensing material candidates. However, achieving the necessary size, size-dispersity, and optical properties has been challenging. Here the synthetic challenges associated with InSb CQDs are investigated and it is found that uncontrolled reduction of the antimony precursor hampers the controlled growth of CQDs. To overcome this, a synthetic strategy that combines nonpyrophoric precursors with zinc halide additives is developed. The experimental and computational studies show that zinc halide additives decelerate the reduction of the antimony precursor, facilitating the growth of more uniformly sized CQDs. It is also found that the halide choice provides additional control over the strength of this effect. The resultant CQDs exhibit well-defined excitonic transitions in spectral range of 1.26-0.98 eV, along with strong photoluminescence. By implementing a postsynthesis ligand exchange, colloidally stable inks enabling the fabrication of high-quality CQD films are achieved. The first demonstration of InSb CQD photodetectors is presented reaching 75% external quantum efficiency (QE) at 1200 nm, to the knowledge the highest short-wave infrared (SWIR) QE reported among heavy-metal-free infrared CQD-based devices.

10.
Sci Adv ; 9(36): eadh2140, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683007

RESUMO

Blue perovskite light-emitting diodes (LEDs) have shown external quantum efficiencies (EQEs) of more than 10%; however, devices that emit in the true blue-those that accord with the emission wavelength required for Rec. 2100 primary blue-have so far been limited to EQEs of ~6%. We focused here on true blue emitting CsPbBr3 colloidal nanocrystals (c-NCs), finding in early studies that they suffer from a high charge injection barrier, a problem exacerbated in films containing multiple layers of nanocrystals. We introduce a self-assembled monolayer (SAM) active layer that improves charge injection. We identified a bifunctional capping ligand that simultaneously enables the self-assembly of CsPbBr3 c-NCs while passivating surface traps. We report, as a result, SAM-based LEDs exhibit a champion EQE of ~12% [CIE of (0.132, 0.069) at 4.0 V with a luminance of 11 cd/m2], and 10-fold-enhanced operating stability relative to the best previously reported Rec. 2100-blue perovskite LEDs.

11.
Adv Mater ; 35(45): e2303528, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37450343

RESUMO

Addition of aqueous hydrohalic acids during the synthesis of colloidal quantum dots (QDs) is widely employed to achieve high-quality QDs. However, this reliance on the use of aqueous solutions is incompatible with oxygen- and water-sensitive precursors such as those used in the synthesis of Te-alloyed ZnSe QDs. Herein, it is shown that this incompatibility leads to phase segregation into Te-rich and Te-poor regions, causing spectral broadening and luminescence peak shifting under high laser irradiation and applied electrical bias. Here, a synthetic strategy to produce anhydrous-HF in situ by using benzenecarbonyl fluoride (BF) as a chemical additive is reported. Through in situ 19 F NMR spectroscopy, it is found that BF reacts with surfactants in tandem, ultimately producing intermediary F···H···trioctylamine adducts. These act as a pseudo-HF source that releases anhydrous HF. The controlled release of HF during nucleation and growth steps homogenizes Te distribution in ZnSeTe lattice, leading to spectrally stable blue-emitting QDs under increasing laser flux from ≈3 µW to ≈12 mW and applied bias from 2.6 to 10 V. Single-dot photoluminescence (PL) spectroscopy and analyses of the absorption, PL and transient absorption spectra together with density functional theory point to the role of anhydrous HF as a Te homogenizer.

12.
Nature ; 620(7973): 328-335, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438526

RESUMO

Perovskites with low ionic radii metal centres (for example, Ge perovskites) experience both geometrical constraints and a gain in electronic energy through distortion; for these reasons, synthetic attempts do not lead to octahedral [GeI6] perovskites, but rather, these crystallize into polar non-perovskite structures1-6. Here, inspired by the principles of supramolecular synthons7,8, we report the assembly of an organic scaffold within perovskite structures with the goal of influencing the geometric arrangement and electronic configuration of the crystal, resulting in the suppression of the lone pair expression of Ge and templating the symmetric octahedra. We find that, to produce extended homomeric non-covalent bonding, the organic motif needs to possess self-complementary properties implemented using distinct donor and acceptor sites. Compared with the non-perovskite structure, the resulting [GeI6]4- octahedra exhibit a direct bandgap with significant redshift (more than 0.5 eV, measured experimentally), 10 times lower octahedral distortion (inferred from measured single-crystal X-ray diffraction data) and 10 times higher electron and hole mobility (estimated by density functional theory). We show that the principle of this design is not limited to two-dimensional Ge perovskites; we implement it in the case of copper perovskite (also a low-radius metal centre), and we extend it to quasi-two-dimensional systems. We report photodiodes with Ge perovskites that outperform their non-octahedral and lead analogues. The construction of secondary sublattices that interlock with an inorganic framework within a crystal offers a new synthetic tool for templating hybrid lattices with controlled distortion and orbital arrangement, overcoming limitations in conventional perovskites.

13.
Adv Mater ; 35(28): e2301842, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37170473

RESUMO

III-V colloidal quantum dots (CQDs) are promising materials for optoelectronic applications, for they avoid heavy metals while achieving absorption spanning the visible to the infrared (IR). However, the covalent nature of III-V CQDs requires the development of new passivation strategies to fabricate conductive CQD solids for optoelectronics: this work shows herein that ligand exchanges, previously developed in II-VI and IV-VI quantum dots and employing a single ligand, do not fully passivate CQDs, and that this curtails device efficiency. Guided by density functional theory (DFT) simulations, this work develops a co-passivation strategy to fabricate indium arsenide CQD photodetectors, an approach that employs the combination of X-type methyl ammonium acetate (MaAc) and Z-type ligands InBr3 . This approach maintains charge carrier mobility and improves passivation, seen in a 25% decrease in Stokes shift, a fourfold reduction in the rate of first-exciton absorption linewidth broadening over time-under-stress, and leads to a doubling in photoluminescence (PL) lifetime. The resulting devices show 37% external quantum efficiency (EQE) at 950 nm, the highest value reported for InAs CQD photodetectors.


Assuntos
Pontos Quânticos , Ligantes , Condutividade Elétrica
14.
Nano Lett ; 23(10): 4298-4303, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37166106

RESUMO

Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL materials exhibit low carrier mobility, limiting the photodiode response speed. We develop instead inverted (p-i-n) SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL, ultimately enabling 4× shorter fall times in photodiodes (∼800 ns for EDT and ∼200 ns for NiOx). Optoelectronic simulations reveal that the high carrier mobility of NiOx enhances the electric field in the active layer, decreasing the overall transport time and increasing photodetector response time.

15.
J Am Chem Soc ; 145(11): 6428-6433, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897963

RESUMO

Indium phosphide (InP) quantum dots have enabled light-emitting diodes (LEDs) that are heavy-metal-free, narrow in emission linewidth, and physically flexible. However, ZnO/ZnMgO, the electron-transporting layer (ETL) in high-performance red InP/ZnSe/ZnS LEDs, suffers from high defect densities, quenches luminescence when deposited on InP, and induces performance degradation that arises due to trap migration from the ETL to the InP emitting layer. We posited that the formation of Zn2+ traps on the outer ZnS shell, combined with sulfur and oxygen vacancy migration between ZnO/ZnMgO and InP, may account for this issue. We synthesized therefore a bifunctional ETL (CNT2T, 3',3'″,3'″″-(1,3,5-triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-3-carbonitrile)) designed to passivate Zn2+ traps locally and in situ and to prevent vacancy migration between layers: the backbone of the small molecule ETL contains a triazine electron-withdrawing unit to ensure sufficient electron mobility (6 × 10-4 cm2 V-1 s-1), and the star-shaped structure with multiple cyano groups provides effective passivation of the ZnS surface. We report as a result red InP LEDs having an EQE of 15% and a luminance of over 12,000 cd m-2; this represents a record among organic-ETL-based red InP LEDs.

16.
Nature ; 612(7941): 679-684, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543955

RESUMO

Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1-5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots' size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7.

17.
Chem Sci ; 13(41): 12144-12148, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349093

RESUMO

Considering nearly infinite design possibilities, organic second harmonic generation (SHG) molecules are believed to have long-term promise. However, because of the tendency to form dipole-antiparallel crystals that lead to zero macroscopic polarization, it is difficult to design a nonlinear optical (NLO) material based on organic molecules. In this manuscript, we report a new molecule motif that can form asymmetric organic solids by controlling the degree of hydrogen bonding through protonation. A conjugated polar organic molecule was prepared with a triple bond connecting an electron-withdrawing pyridine ring and an electron-donating thiophene ring. By controlling the degree of hydrogen bonding through protonation, two different crystal packing motifs are achieved. One crystallizes into the common dipole-antiparallel nonpolar P1̄ space group. The second crystallizes into the uncommon dipole-parallel polar P1 space group, in which the molecular dipoles are aligned along a single axis and thus exhibit a high macroscopic polarization in its solid-state form. Due to the P1 polar packing, the sample can generate second harmonic light efficiently, about three times the intensity of the benchmark potassium dihydrogen phosphate. Our findings show that crystal engineering by hydrogen bonding in a single molecular backbone can be used for controlling the macroscopic NLO properties.

18.
J Am Chem Soc ; 144(45): 20923-20930, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36327099

RESUMO

InP-based quantum dot (QD) light-emitting diodes (QLEDs) provide a heavy-metal-free route to size-tuned LEDs having high efficiency. The stability of QLEDs may be enhanced by replacing organic hole-injection layers (HILs) with inorganic layers. However, inorganic HILs reported to date suffer from inefficient hole injection, the result of their shallow work functions. Here, we investigate the tuning of the work function of nickel oxide (NiOx) HILs using self-assembled molecules (SAMs). Density functional theory simulations and near-edge X-ray absorption fine structure put a particular focus onto the molecular orientation of the SAMs in tuning the work function of the NiOx HIL. We find that orientation plays an even stronger role than does the underlying molecular dipole itself: SAMs having the strongest electron-withdrawing nitro group (NO2), despite having a high intrinsic dipole, show limited work function tuning, something we assign to their orientation parallel to the NiOx surface. We further find that the NO2 group─which delocalizes electrons over the molecule by resonance─induces a deep lowest unoccupied molecular orbital level that accepts electrons from QDs, producing luminescence quenching. In contrast, SAMs containing a trifluoromethyl group exhibit an angled orientation relative to the NiOx surface, better activating hole injection into the active layer without inducing luminescence quenching. We report an external quantum efficiency (EQE) of 18.8%─the highest EQE among inorganic HIL-based QLEDs (including Cd-based QDs)─in InP QLEDs employing inorganic HILs.

19.
Adv Mater ; 34(47): e2207261, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36125397

RESUMO

Electro-optic (EO) modulators provide electrical-to-optical signal conversion relevant to optical communications. Barium titanate (BaTiO3 ) is a promising material system for EO modulation in light of its optical ultrafast nonlinearity, low optical loss, and high refractive index. To enhance further its spontaneous polarization, BaTiO3 can be doped at the Ba and Ti sites; however, doping is often accompanied by ion migration, which diminishes EO performance. Here, donor-acceptor doping and its effect on EO efficiency are investigated, finding that La-doped BaTiO3 achieves an EO coefficient of 42 pm V-1 at 1 kHz, fully twice that of the pristine specimen; however, it is also observed that, with this single-element doping, the EO response falls off rapidly with frequency. From impedance spectroscopy, it is found that frequency-dependent EO is correlated with ion migration. Density functional theory calculations predict that the ion-migration barrier decreases with La3+ doping but can be recovered with further Mn2+ doping, a finding that prompts to prevent ion migration by incorporating Mn2+ into the Ti-site to compensate for the charge imbalance.

20.
Adv Mater ; 34(47): e2206884, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134538

RESUMO

Solution-processed photodetectors based on colloidal quantum dots (CQDs) are promising candidates for short-wavelength infrared light sensing applications. Present-day CQD photodetectors employ a CQD active layer sandwiched between carrier-transport layers in which the electron-transport layer (ETL) is composed of metal oxides. Herein, a new class of ETLs is developed using n-type CQDs, finding that these benefit from quantum-size effect tuning of the band energies, as well as from surface ligand engineering. Photodetectors operating at 1450 nm are demonstrated using CQDs with tailored functionalities for each of the transport layers and the active layer. By optimizing the band alignment between the ETL and the active layer, CQD photodetectors that combine a low dark current of ≈1 × 10-3 mA cm-2 with a high external quantum efficiency of ≈66% at 1 V are reported, outperforming prior reports of CQD photodetectors operating at >1400 nm that rely on metal oxides as ETLs. It is shown that stable CQD photodetectors rely on well-passivated CQDs: for ETL CQDs, a strongly bound organic ligand trans-4-(trifluoromethyl)cinnamic acid (TFCA) provides improved passivation compared to the weakly bound inorganic ligand tetrabutylammonium iodide (TBAI). TFCA suppresses bias-induced ion migration inside the ETL and improves the operating stability of photodetectors by 50× compared to TBAI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA