Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562747

RESUMO

Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is however difficult and, apart from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. Experimental Design: RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n=138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. We used the DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) that is based on classification scores derived from a CNS-tumor classifier. We found that the CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with i) an upregulation of cell cycling genes; ii) a downregulation of glial differentiation genes; iii) an upregulation of embryonic development genes (e.g. HOX, PAX and TBX) and iv) an upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes.

2.
Neurooncol Adv ; 5(1): vdad149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024241

RESUMO

Background: The T2-FLAIR mismatch sign is defined by signal loss of the T2-weighted hyperintense area with Fluid-Attenuated Inversion Recovery (FLAIR) on magnetic resonance imaging, causing a hypointense region on FLAIR. It is a highly specific diagnostic marker for IDH-mutant astrocytoma and is postulated to be caused by intercellular microcystic change in the tumor tissue. However, not all IDH-mutant astrocytomas show this mismatch sign and some show the phenomenon in only part of the lesion. The aim of the study is to determine whether the T2-FLAIR mismatch phenomenon has any prognostic value beyond initial noninvasive molecular diagnosis. Methods: Patients initially diagnosed with histologically lower-grade (2 or 3) IDH-mutant astrocytoma and with at least 2 surgical resections were included in the GLASS-NL cohort. T2-FLAIR mismatch was determined, and the growth pattern of the recurrent tumor immediately before the second resection was annotated as invasive or expansive. The relation between the T2-FLAIR mismatch sign and tumor grade, microcystic change, overall survival (OS), and other clinical parameters was investigated both at first and second resection. Results: The T2-FLAIR mismatch sign was significantly related to Grade 2 (80% vs 51%), longer post-resection median OS (8.3 vs 5.2 years), expansive growth, and lower age at second resection. At first resection, no relation was found between the mismatch sign and OS. Microcystic change was associated with areas of T2-FLAIR mismatch. Conclusions: T2-FLAIR mismatch in IDH-mutant astrocytomas is correlated with microcystic change in the tumor tissue, favorable prognosis, and Grade 2 tumors at the time of second resection.

3.
Cancer Cell ; 41(4): 678-692.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898379

RESUMO

A better understanding of transcriptional evolution of IDH-wild-type glioblastoma may be crucial for treatment optimization. Here, we perform RNA sequencing (RNA-seq) (n = 322 test, n = 245 validation) on paired primary-recurrent glioblastoma resections of patients treated with the current standard of care. Transcriptional subtypes form an interconnected continuum in a two-dimensional space. Recurrent tumors show preferential mesenchymal progression. Over time, hallmark glioblastoma genes are not significantly altered. Instead, tumor purity decreases over time and is accompanied by co-increases in neuron and oligodendrocyte marker genes and, independently, tumor-associated macrophages. A decrease is observed in endothelial marker genes. These composition changes are confirmed by single-cell RNA-seq and immunohistochemistry. An extracellular matrix-associated gene set increases at recurrence and bulk, single-cell RNA, and immunohistochemistry indicate it is expressed mainly by pericytes. This signature is associated with significantly worse survival at recurrence. Our data demonstrate that glioblastomas evolve mainly by microenvironment (re-)organization rather than molecular evolution of tumor cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/genética , Perfilação da Expressão Gênica , Transcriptoma
4.
Commun Biol ; 5(1): 338, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396392

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pequeno RNA não Traduzido , Archaea/genética , Bactérias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Humano , Humanos , Masculino
5.
Clin Cancer Res ; 28(12): 2527-2535, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35275197

RESUMO

PURPOSE: In a post hoc analysis of the CATNON trial (NCT00626990), we explored whether adding temozolomide to radiotherapy improves outcome in patients with IDH1/2 wildtype (wt) anaplastic astrocytomas with molecular features of glioblastoma [redesignated as glioblastoma, isocitrate dehydrogenase-wildtype (IDH-wt) in the 2021 World Health Organization (WHO) classification of central nervous system tumors]. PATIENTS AND METHODS: From the randomized phase III CATNON study examining the addition of adjuvant and concurrent temozolomide to radiotherapy in anaplastic astrocytomas, we selected a subgroup of IDH1/2wt and H3F3Awt tumors with presence of TERT promoter mutations and/or EGFR amplifications and/or combined gain of chromosome 7 and loss of chromosome 10. Molecular abnormalities including MGMT promoter methylation status were determined by next-generation sequencing, DNA methylation profiling, and SNaPshot analysis. RESULTS: Of the 751 patients entered in the CATNON study, 670 had fully molecularly characterized tumors. A total of 159 of these tumors met the WHO 2021 molecular criteria for glioblastoma, IDH-wt. Of these patients, 47 received radiotherapy only and 112 received a combination of radiotherapy and temozolomide. There was no added effect of temozolomide on either overall survival [HR, 1.19; 95% confidence interval (CI), 0.82-1.71] or progression-free survival (HR, 0.87; 95% CI, 0.61-1.24). MGMT promoter methylation was prognostic for overall survival, but was not predictive for outcome to temozolomide treatment either with respect to overall survival or progression-free survival. CONCLUSIONS: In this cohort of patients with glioblastoma, IDH-wt temozolomide treatment did not add benefit beyond that observed from radiotherapy, regardless of MGMT promoter status. These findings require a new well-powered prospective clinical study to explore the efficacy of temozolomide treatment in this patient population.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes , Astrocitoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Isocitrato Desidrogenase/genética , Estudos Prospectivos , Temozolomida/uso terapêutico
6.
Neurooncol Adv ; 4(1): vdab177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047820

RESUMO

BACKGROUND: The survival of glioblastoma patients is poor. Median survival after diagnosis is 15 months, despite treatment involving surgical resection, radiotherapy, and/or temozolomide chemotherapy. Identification of novel targets and stratification strategies of glioblastoma patients to improve patient survival is urgently needed. Whole-genome sequencing (WGS) is the most comprehensive means to identify such DNA-level targets. We report a unique set of WGS samples along with comprehensive analyses of the glioblastoma genome and potential clinical impact of WGS. METHODS: Our cohort consisted of 42 glioblastoma tumor tissue and matched whole-blood samples, which were whole-genome sequenced as part of the CPCT-02 study. Somatic single-nucleotide variants, small insertions/deletions, multi-nucleotide variants, copy-number alterations (CNAs), and structural variants were analyzed. These aberrations were harnessed to investigate driver genes, enrichments in CNAs, mutational signatures, fusion genes, and potential targeted therapies. RESULTS: Tumor mutational burden (TMB) was similar to other WGS efforts (1-342 mutations per megabase pair). Mutational analysis in low TMB samples showed that the age-related CpG demethylation signature was dominant, while hyper- and ultramutated tumors had additional defective DNA mismatch repair signatures and showed microsatellite instability in their genomes. We detected chromothripsis in 24% of our cohort, recurrently on chromosomes 1 and 12. Recurrent noncoding regions only resulted in TERT promoter variants. Finally, we found biomarkers and potentially druggable changes in all but one of our tumor samples. CONCLUSIONS: With high-quality WGS data and comprehensive methods, we identified the landscape of driver gene events and druggable targets in glioblastoma patients.

7.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37848617

RESUMO

BACKGROUND: Kataegis refers to the occurrence of regional genomic hypermutation in cancer and is a phenomenon that has been observed in a wide range of malignancies. A kataegis locus constitutes a genomic region with a high mutation rate (i.e., a higher frequency of closely interspersed somatic variants than the overall mutational background). It has been shown that kataegis is of biological significance and possibly clinically relevant. Therefore, an accurate and robust workflow for kataegis detection is paramount. FINDINGS: Here we present Katdetectr, an open-source R/Bioconductor-based package for the robust yet flexible and fast detection of kataegis loci in genomic data. In addition, Katdetectr houses functionalities to characterize and visualize kataegis and provides results in a standardized format useful for subsequent analysis. In brief, Katdetectr imports industry-standard formats (MAF, VCF, and VRanges), determines the intermutation distance of the genomic variants, and performs unsupervised changepoint analysis utilizing the Pruned Exact Linear Time search algorithm followed by kataegis calling according to user-defined parameters.We used synthetic data and an a priori labeled pan-cancer dataset of whole-genome sequenced malignancies for the performance evaluation of Katdetectr and 5 publicly available kataegis detection packages. Our performance evaluation shows that Katdetectr is robust regarding tumor mutational burden and shows the fastest mean computation time. Additionally, Katdetectr reveals the highest accuracy (0.99, 0.99) and normalized Matthews correlation coefficient (0.98, 0.92) of all evaluated tools for both datasets. CONCLUSIONS: Katdetectr is a robust workflow for the detection, characterization, and visualization of kataegis and is available on Bioconductor: https://doi.org/doi:10.18129/B9.bioc.katdetectr.


Assuntos
Neoplasias , Software , Humanos , Genômica , Algoritmos , Mutação , Neoplasias/genética
8.
Neuro Oncol ; 24(3): 429-441, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608482

RESUMO

BACKGROUND: EGFR is among the genes most frequently altered in glioblastoma, with exons 2-7 deletions (EGFRvIII) being among its most common genomic mutations. There are conflicting reports about its prognostic role and it remains unclear whether and how it differs in signaling compared with wildtype EGFR. METHODS: To better understand the oncogenic role of EGFRvIII, we leveraged 4 large datasets into 1 large glioblastoma transcriptome dataset (n = 741) alongside 81 whole-genome samples from 2 datasets. RESULTS: The EGFRvIII/EGFR expression ratios differ strongly between tumors and range from 1% to 95%. Interestingly, the slope of relative EGFRvIII expression is near-linear, which argues against a more positive selection pressure than EGFR wildtype. An absence of selection pressure is also suggested by the similar survival between EGFRvIII-positive and -negative glioblastoma patients. EGFRvIII levels are inversely correlated with pan-EGFR (all wildtype and mutant variants) expression, which indicates that EGFRvIII has a higher potency in downstream pathway activation. EGFRvIII-positive glioblastomas have a lower CDK4 or MDM2 amplification incidence than EGFRvIII-negative (P = .007), which may point toward crosstalk between these pathways. EGFRvIII-expressing tumors have an upregulation of "classical" subtype genes compared to those with EGFR-amplification only (P = 3.873e-6). Genomic breakpoints of the EGFRvIII deletions have a preference toward the 3'-end of the large intron-1. These preferred breakpoints preserve a cryptic exon resulting in a novel EGFRvIII variant and preserve an intronic enhancer. CONCLUSIONS: These data provide deeper insights into the complex EGFRvIII biology and provide new insights for targeting EGFRvIII mutated tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Receptores ErbB/metabolismo , Glioblastoma/patologia , Humanos , Transcriptoma
9.
Gigascience ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34891161

RESUMO

BACKGROUND: Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic breakpoints. However, non-poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic breakpoints. RESULTS: We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA-minus RNA-seq data. Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally, transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG-positive tumours were present at RNA level. We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore, in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be identified using RNA-seq. CONCLUSION: By using the full potential of non-poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify expressed genomic breakpoints and their transcriptional effects.


Assuntos
Genômica , RNA Ribossômico , Fusão Gênica , Genoma , Análise de Sequência de RNA
10.
BMC Bioinformatics ; 22(1): 535, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724897

RESUMO

BACKGROUND: The FASTA file format, used to store polymeric sequence data, has become a bioinformatics file standard used for decades. The relatively large files require additional files, beyond the scope of the original format, to identify sequences and to provide random access. Multiple compressors have been developed to archive FASTA files back and forth, but these lack direct access to targeted content or metadata of the archive. Moreover, these solutions are not directly backwards compatible to FASTA files, resulting in limited software integration. RESULTS: We designed a linux based toolkit that virtualises the content of DNA, RNA and protein FASTA archives into the filesystem by using filesystem in userspace. This guarantees in-sync virtualised metadata files and offers fast random-access decompression using bit encodings plus Zstandard (zstd). The toolkit, FASTAFS, can track all its system-wide running instances, allows file integrity verification and can provide, instantly, scriptable access to sequence files and is easy to use and deploy. The file compression ratios were comparable but not superior to other state of the art archival tools, despite the innovative random access feature implemented in FASTAFS. CONCLUSIONS: FASTAFS is a user-friendly and easy to deploy backwards compatible generic purpose solution to store and access compressed FASTA files, since it offers file system access to FASTA files as well as in-sync metadata files through file virtualisation. Using virtual filesystems as in-between layer offers format conversion without the need to rewrite code into different programming languages while preserving compatibility.


Assuntos
Compressão de Dados , Software , Biologia Computacional , Proteínas/genética
11.
Neurooncol Adv ; 3(1): vdab103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595478

RESUMO

BACKGROUND: Mutations of the isocitrate dehydrogenase (IDH) gene occur in over 80% of low-grade gliomas and secondary glioblastomas. Despite considerable efforts, endogenous in vitro IDH-mutated glioma models remain scarce. Availability of these models is key for the development of new therapeutic interventions. METHODS: Cell cultures were established from fresh tumor material and expanded in serum-free culture media. D-2-Hydroxyglutarate levels were determined by mass spectrometry. Genomic and transcriptomic profiling were carried out on the Illumina Novaseq platform, methylation profiling was performed with the Infinium MethylationEpic BeadChip array. Mitochondrial respiration was measured with the Seahorse XF24 Analyzer. Drug screens were performed with an NIH FDA-approved anti-cancer drug set and two IDH-mutant specific inhibitors. RESULTS: A set of twelve patient-derived IDHmt cell cultures was established. We confirmed high concordance in driver mutations, copy numbers and methylation profiles between the tumors and derived cultures. Homozygous deletion of CDKN2A/B was observed in all cultures. IDH-mutant cultures had lower mitochondrial reserve capacity. IDH-mutant specific inhibitors did not affect cell viability or global gene expression. Screening of 107 FDA-approved anti-cancer drugs identified nine compounds with potent activity against IDHmt gliomas, including three compounds with favorable pharmacokinetic characteristics for CNS penetration: teniposide, omacetaxine mepesuccinate, and marizomib. CONCLUSIONS: Our twelve IDH-mutant cell cultures show high similarity to the parental tissues and offer a unique tool to study the biology and drug sensitivities of high-grade IDHmt gliomas in vitro. Our drug screening studies reveal lack of sensitivity to IDHmt inhibitors, but sensitivity to a set of nine available anti-cancer agents.

12.
Neuro Oncol ; 23(9): 1547-1559, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914057

RESUMO

BACKGROUND: Survival in patients with IDH1/2-mutant (mt) anaplastic astrocytomas is highly variable. We have used the prospective phase 3 CATNON trial to identify molecular factors related to outcome in IDH1/2mt anaplastic astrocytoma patients. METHODS: The CATNON trial randomized 751 adult patients with newly diagnosed 1p/19q non-codeleted anaplastic glioma to 59.4 Gy radiotherapy +/- concurrent and/or adjuvant temozolomide. The presence of necrosis and/or microvascular proliferation was scored at central pathology review. Infinium MethylationEPIC BeadChip arrays were used for genome-wide DNA methylation analysis and the determination of copy number variations (CNV). Two DNA methylation-based tumor classifiers were used for risk stratification. Next-generation sequencing (NGS) was performed using 1 of the 2 glioma-tailored NGS panels. The primary endpoint was overall survival measured from the date of randomization. RESULTS: Full analysis (genome-wide DNA methylation and NGS) was successfully performed on 654 tumors. Of these, 432 tumors were IDH1/2mt anaplastic astrocytomas. Both epigenetic classifiers identified poor prognosis patients that partially overlapped. A predictive prognostic Cox proportional hazard model identified that independent prognostic factors for IDH1/2mt anaplastic astrocytoma patients included; age, mini-mental state examination score, treatment with concurrent and/or adjuvant temozolomide, the epigenetic classifiers, PDGFRA amplification, CDKN2A/B homozygous deletion, PI3K mutations, and total CNV load. Independent recursive partitioning analysis highlights the importance of these factors for patient prognostication. CONCLUSION: Both clinical and molecular factors identify IDH1/2mt anaplastic astrocytoma patients with worse outcome. These results will further refine the current WHO criteria for glioma classification.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Cromossomos Humanos Par 1 , Variações do Número de Cópias de DNA , Metilação de DNA , Glioma/genética , Glioma/terapia , Homozigoto , Humanos , Isocitrato Desidrogenase/genética , Mutação , Prognóstico , Estudos Prospectivos , Deleção de Sequência
13.
Neuro Oncol ; 23(5): 707-708, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33704479
14.
Acta Neuropathol ; 141(6): 945-957, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33740099

RESUMO

Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.


Assuntos
Astrocitoma/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/genética , Metilação de DNA/genética , Isocitrato Desidrogenase/genética , Mutação , Neoplasias Encefálicas/diagnóstico , Humanos , Prognóstico , Taxa de Sobrevida
15.
Sci Rep ; 10(1): 13173, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764569

RESUMO

The prevalence of diabetic metabolic derangement (DMetD) has increased dramatically over the last decades. Although there is increasing evidence that DMetD is associated with cardiac dysfunction, the early DMetD-induced myocardial alterations remain incompletely understood. Here, we studied early DMetD-related cardiac changes in a clinically relevant large animal model. DMetD was established in adult male Göttingen miniswine by streptozotocin injections and a high-fat, high-sugar diet, while control animals remained on normal pig chow. Five months later left ventricular (LV) function was assessed by echocardiography and hemodynamic measurements, followed by comprehensive biochemical, molecular and histological analyses. Robust DMetD developed, evidenced by hyperglycemia, hypercholesterolemia and hypertriglyceridemia. DMetD resulted in altered LV nitroso-redox balance, increased superoxide production-principally due to endothelial nitric oxide synthase (eNOS) uncoupling-reduced nitric oxide (NO) production, alterations in myocardial gene-expression-particularly genes related to glucose and fatty acid metabolism-and mitochondrial dysfunction. These abnormalities were accompanied by increased passive force of isolated cardiomyocytes, and impaired LV diastolic function, evidenced by reduced LV peak untwist velocity and increased E/e'. However, LV weight, volume, collagen content, and cardiomyocyte cross-sectional area were unchanged at this stage of DMetD. In conclusion, DMetD, in a clinically relevant large-animal model results in myocardial oxidative stress, eNOS uncoupling and reduced NO production, together with an altered metabolic gene expression profile and mitochondrial dysfunction. These molecular alterations are associated with stiffening of the cardiomyocytes and early diastolic dysfunction before any structural cardiac remodeling occurs. Therapies should be directed to ameliorate these early DMetD-induced myocardial changes to prevent the development of overt cardiac failure.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diástole , Mitocôndrias/patologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Animais , Respiração Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Hemodinâmica , Suínos
16.
Neurooncol Adv ; 2(1): vdz051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642719

RESUMO

BACKGROUND: The randomized phase II INTELLANCE-2/EORTC_1410 trial on EGFR-amplified recurrent glioblastomas showed a trend towards improved overall survival when patients were treated with depatux-m plus temozolomide compared with the control arm of alkylating chemotherapy only. We here performed translational research on material derived from this clinical trial to identify patients that benefit from this treatment. METHODS: Targeted DNA-sequencing and whole transcriptome analysis was performed on clinical trial samples. High-throughput, high-content imaging analysis was done to understand the molecular mechanism underlying the survival benefit. RESULTS: We first define the tumor genomic landscape in this well-annotated patient population. We find that tumors harboring EGFR single-nucleotide variations (SNVs) have improved outcome in the depatux-m + TMZ combination arm. Such SNVs are common to the extracellular domain of the receptor and functionally result in a receptor that is hypersensitive to low-affinity EGFR ligands. These hypersensitizing SNVs and the ligand-independent EGFRvIII variant are inversely correlated, indicating two distinct modes of evolution to increase EGFR signaling in glioblastomas. Ligand hypersensitivity can explain the therapeutic efficacy of depatux-m as increased ligand-induced activation will result in increased exposure of the epitope to the antibody-drug conjugate. We also identified tumors harboring mutations sensitive to "classical" EGFR tyrosine-kinase inhibitors, providing a potential alternative treatment strategy. CONCLUSIONS: These data can help guide treatment for recurrent glioblastoma patients and increase our understanding into the molecular mechanisms underlying EGFR signaling in these tumors.

17.
Sci Adv ; 6(25): eaaz4849, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596446

RESUMO

CRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, Campylobacter jejuni secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death. Compared to CjeCas9, native Cas9 of Streptococcus pyogenes (SpyCas9) is more suitable for guide-dependent editing. However, in human cells, native SpyCas9 may still cause some DNA damage, most likely because of its ssDNA cleavage activity. This side effect can be completely prevented by saturation of SpyCas9 with an appropriate guide RNA, which is only partially effective for CjeCas9. We conclude that CjeCas9 plays an active role in attacking human cells rather than in viral defense. Moreover, these unique catalytic features may therefore make CjeCas9 less suitable for genome editing applications.


Assuntos
Proteína 9 Associada à CRISPR , Campylobacter jejuni , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , DNA/genética , Edição de Genes , Humanos , RNA Guia de Cinetoplastídeos/genética
18.
Int J Cancer ; 146(7): 1979-1992, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411736

RESUMO

Removal of colorectal adenomas is an effective strategy to reduce colorectal cancer (CRC) mortality rates. However, as only a minority of adenomas progress to cancer, such strategies may lead to overtreatment. The present study aimed to characterize adenomas by in-depth molecular profiling, to obtain insights into altered biology associated with the colorectal adenoma-to-carcinoma progression. We obtained low-coverage whole genome sequencing, RNA sequencing and tandem mass spectrometry data for 30 CRCs, 30 adenomas and 18 normal adjacent colon samples. These data were used for DNA copy number aberrations profiling, differential expression, gene set enrichment and gene-dosage effect analysis. Protein expression was independently validated by immunohistochemistry on tissue microarrays and in patient-derived colorectal adenoma organoids. Stroma percentage was determined by digital image analysis of tissue sections. Twenty-four out of 30 adenomas could be unambiguously classified as high risk (n = 9) or low risk (n = 15) of progressing to cancer, based on DNA copy number profiles. Biological processes more prevalent in high-risk than low-risk adenomas were related to proliferation, tumor microenvironment and Notch, Wnt, PI3K/AKT/mTOR and Hedgehog signaling, while metabolic processes and protein secretion were enriched in low-risk adenomas. DNA copy number driven gene-dosage effect in high-risk adenomas and cancers was observed for POFUT1, RPRD1B and EIF6. Increased POFUT1 expression in high-risk adenomas was validated in tissue samples and organoids. High POFUT1 expression was also associated with Notch signaling enrichment and with decreased goblet cells differentiation. In-depth molecular characterization of colorectal adenomas revealed POFUT1 and Notch signaling as potential drivers of tumor progression.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fucosiltransferases/genética , Proteínas Oncogênicas/genética , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Biomarcadores Tumorais , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Neoplasias Colorretais/metabolismo , Progressão da Doença , Fucosiltransferases/metabolismo , Humanos , Proteínas Oncogênicas/metabolismo , Reprodutibilidade dos Testes , Microambiente Tumoral
19.
Cell ; 176(4): 831-843.e22, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735634

RESUMO

The cancer transcriptome is remarkably complex, including low-abundance transcripts, many not polyadenylated. To fully characterize the transcriptome of localized prostate cancer, we performed ultra-deep total RNA-seq on 144 tumors with rich clinical annotation. This revealed a linear transcriptomic subtype associated with the aggressive intraductal carcinoma sub-histology and a fusion profile that differentiates localized from metastatic disease. Analysis of back-splicing events showed widespread RNA circularization, with the average tumor expressing 7,232 circular RNAs (circRNAs). The degree of circRNA production was correlated to disease progression in multiple patient cohorts. Loss-of-function screening identified 11.3% of highly abundant circRNAs as essential for cell proliferation; for ∼90% of these, their parental linear transcripts were not essential. Individual circRNAs can have distinct functions, with circCSNK1G3 promoting cell growth by interacting with miR-181. These data advocate for adoption of ultra-deep RNA-seq without poly-A selection to interrogate both linear and circular transcriptomes.


Assuntos
Neoplasias da Próstata/genética , RNA/genética , RNA/metabolismo , Perfilação da Expressão Gênica/métodos , Perfil Genético , Células HEK293 , Humanos , Masculino , MicroRNAs/metabolismo , Próstata/metabolismo , Splicing de RNA/genética , RNA Circular , RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Transcriptoma
20.
J Pathol ; 246(3): 266-276, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29968252

RESUMO

Consensus molecular subtyping is an RNA expression-based classification system for colorectal cancer (CRC). Genomic alterations accumulate during CRC pathogenesis, including the premalignant adenoma stage, leading to changes in RNA expression. Only a minority of adenomas progress to malignancies, a transition that is associated with specific DNA copy number aberrations or microsatellite instability (MSI). We aimed to investigate whether colorectal adenomas can already be stratified into consensus molecular subtype (CMS) classes, and whether specific CMS classes are related to the presence of specific DNA copy number aberrations associated with progression to malignancy. RNA sequencing was performed on 62 adenomas and 59 CRCs. MSI status was determined with polymerase chain reaction-based methodology. DNA copy number was assessed by low-coverage DNA sequencing (n = 30) or array-comparative genomic hybridisation (n = 32). Adenomas were classified into CMS classes together with CRCs from the study cohort and from The Cancer Genome Atlas (n = 556), by use of the established CMS classifier. As a result, 54 of 62 (87%) adenomas were classified according to the CMS. The CMS3 'metabolic subtype', which was least common among CRCs, was most prevalent among adenomas (n = 45; 73%). One of the two adenomas showing MSI was classified as CMS1 (2%), the 'MSI immune' subtype. Eight adenomas (13%) were classified as the 'canonical' CMS2. No adenomas were classified as the 'mesenchymal' CMS4, consistent with the fact that adenomas lack invasion-associated stroma. The distribution of the CMS classes among adenomas was confirmed in an independent series. CMS3 was enriched with adenomas at low risk of progressing to CRC, whereas relatively more high-risk adenomas were observed in CMS2. We conclude that adenomas can be stratified into the CMS classes. Considering that CMS1 and CMS2 expression signatures may mark adenomas at increased risk of progression, the distribution of the CMS classes among adenomas is consistent with the proportion of adenomas expected to progress to CRC. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Adenoma/genética , Biomarcadores Tumorais/genética , Carcinoma/genética , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Instabilidade de Microssatélites , Adenoma/classificação , Adenoma/metabolismo , Carcinoma/classificação , Carcinoma/metabolismo , Diferenciação Celular , Neoplasias Colorretais/classificação , Neoplasias Colorretais/patologia , Consenso , Progressão da Doença , Predisposição Genética para Doença , Humanos , Estadiamento de Neoplasias , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA